
Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

1

IEEE P2000.21
Draft Recommended Practice for Information Technology2
Year 2000 Test Methods3
Draft 124

5
6

IEEE Std P2000.2 was prepared by the P2000.2 Working group of the IEEE Portable7
Applications Standards Committee.8

9
10

Copyright 1998 by the Institute of Electrical and Electronics Engineers, Inc.11
345 East 47th Street12
New York, NY 10017, USA13
All Rights Reserved14

15
This is an IEEE Standards Project, subject to change. Permission is hereby granted for16
IEEE Standards Committee participants to reproduce this document for the purpose of17
IEEE standardization activities, including balloting and coordination. If this document is18
to be submitted to ISO or IEC, notification shall be given to the IEEE Copyrights19
Administrator. Permission is also granted for member bodies and technical committees20
of ISO and IEC to reproduce this document for purposes of developing a national21
position. Other entities seeking permission to reproduce portions of this document for22
these or other uses must contact the IEEE Standards Department for the appropriate23
licenses. Use of information contained in the unapproved draft is at own risk.24

25
IEEE Standards Department26
Copyrights and Permissions27
445 Hoes Lane, P.O. Box 1331,28
Piscataway, NJ 08855-1331 USA29

30
31
32
33
34
35

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

2

Introduction36
37

This Test Method's recommended practice provides the framework for detailed planning38
and execution of all steps and tasks involved in testing for Year 2000 compliance. The39
resulting test plan would outline the testing approach and identify system elements that40
are at risk of failure when crossing into the Year 2000 or using data that includes dates41
after 2000-01-01. The focus of this Test Methods Recommended Practice is to ease the42
transition for companies through Year 2000 testing by outlining a range of example test43
cases to aid and expand the capabilities of the individual companies to assess, test, and44
verify software, hardware and firmware. This recommended practice should be used45
with IEEE Std 2000.1-1998 (Year 2000 Terminology).46

47
This recommended practice describes the process, test methods, and remediation for48
Year 2000 assessment and validation. It is intended for individuals or organizations that49
develop, test, acquire, or use software, firmware, or hardware.50

51
This recommended practice is designed to help individuals and organizations: This52
document does not attempt to develop a comprehensive test suite. It is expected that53
systems affected by Year 2000 related problems will range from single chip embedded54
systems to global networks. Since test procedures are typically system dependent, it is55
impossible to address every Year 2000 problem. Instead, included are examples of56
sample test cases that are intended to spur investigation into similar functions in a57
specific application. These sample test cases were intended to be generally applicable.58
Furthermore, the test cases are intended to be problem specific and not application59
specific and may have applicability to a wide variety of applications or situations. For60
this reason application-specific terminology has been avoided where possible. It is likely61
that a specific system may need hundreds of test cases related to a single type of62
module. The process of writing the test case steps and results will be facilitated using63
the sample test cases. It should be noted at this point that this recommended practice64
guide focuses only on the century digit change problem, it does not address date counter65
overflow.66

67
Warning: Testing for Year 2000 related issues on operational systems might68
cause damage to the system or the data contained therein. Some of these issues69
will be further addressed in this document.70

71
Organization of recommended practice72
The standard is divided into six sections:73
- Statement of Scope, and conformance information (Section 1)74
- Normative References, list of normative references (Section 2)75
- Definitions of terms as used in this document (Section 3)76
- General requirements, editorial comments and warnings (Section 4)77
- Methodology for creation of a test plan (Section 5)78
- System elements at risk – Example test cases (Section 6)79
- Informative Annexes80

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

3

 IEEE Std P2000.2 Recommended Practice for Information Technologies Year 2000 Test81
Methods was prepared by the P2000.2 Working Group of the IEEE Computer Society. At82
the time this best practice was approved, the membership of the IEEE PASC working83
group was as follows:84
 85
 86
 Participants87
 88
 At the time IEEE completed this document the Year 2000 Test Methodology Working89
Group had the following membership:90

91
 Chairperson92

 Lowell Johnson93
 94
 Technical editor95

 Christina Drukala96
 97

 Major contributors98
 Steven Brock99
 Christina Drukala100
 Don Estes101
 Vincent E. Henley102
 Thomas P. Koenig103
 John Napier104
 Alan Peltzman105
 Terrill J. Slocum106

107
 Work group108

 Steven Brock109
 Johnathon Chapman110
 Eldon Colby111
 David Dodd112
 Christina Drukala113
 Don Estes114
 Vincent E. Henley115
 Dr. John S. Davies116
 Nelson deGrandmaison117
 Victor Grebler118
 Mary Hengstebeck119
 Thomas P. Koenig120
 Bob Lynch121
 John Napier122
 Alan Peltzman123
 John Rusell124
 Terrill J. Slocum125
 Gary R. Young126
 127
 128
 129

 This list may be incomplete at any time prior to commencement of balloting130
 131
 132

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

4

1 Overview... 7133

1.1 Scope: ... 7134

1.2 Purpose ... 8135

1.3 Assumptions.. 8136

2 Normative references.. 8137

3 Definitions.. 9138

3.1 acceptable deviation.. 9139

3.2 bridge.. 9140

3.3 failure.. 9141

3.4 future regression... 9142

3.5 Gregorian calendar (G) .. 9143

3.6 Julian calendar (J) .. 9144

3.7 Julian date (JD) .. 9145

3.8 Lilian day number (LDN)..10146

3.9 ordinal date (OD)...10147

3.10 pass ..10148

3.11 real time clock (RTC) ..10149

3.12 special logic..10150

3.13 system elements..10151

3.14 system time ..11152

3.15 user defined date systems ..11153

3.16 Year 2000 rollover...11154

4 General requirements and warnings .. 12155

4.1 Editorial conventions ...12156

4.2 Warnings ...12157

5 Methodology... 15158

5.1 Year 2000 life cycle:...15159

5.2 Test process ...15160

5.3 Impact of external constraints on the Year 2000 testing strategy20161

5.4 Test impact of remediation techniques ..21162

5.5 Special considerations involving embedded systems24163

5.6 Special-condition dates ..28164

5.7 Special date conditions...32165

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

5

5.8 System components to be tested ..35166

6 System elements at risk... 35167

6.1 Interfaces: Shared control blocks/API/DDE/OLE.......................................36168

6.2 Archiving/restoring..37169

6.3 Backup and restore..42170

6.4 Calculations ...45171

6.5 Date determination ..49172

6.6 Hardware...53173

6.7 Computer numerical controls ..55174

6.8 Communication protocols..56175

6.9 Compilers...57176

6.10 Event-triggers..61177

6.11 Error handling...65178

6.12 File access system...67179

6.13 Globalization/internationalization..70180

6.14 Synchronization of distributed networks...71181

6.15 Import/export ..75182

6.16 Multi-system windowing..79183

6.17 Licensing..81184

6.18 Logs/date stamps ...83185

6.19 Merge...84186

6.20 Parsing/validation ..87187

6.21 Performance...90188

6.22 Operational time periods ...91189

6.23 Queries, filters and data views...92190

6.24 Data recovery ..94191

6.25 Bridge testing...96192

6.26 Sorting ...99193

6.27 User Interface (Input and Output) ..101194

6.28 Date format..101195

Annex - A Search strings (informative) ... 103196

Annex - B Dates (informative)... 103197

Annex - C Example archive documentation (informative) 104198

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

6

Annex - D Alternative testing methodology (informative) 107199

Annex - E Coverage overview (informative) ... 109200

Annex - F Informative references (informative) .. 111201
 202

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

7

 IEEE Recommended Practice for Information Technology - PASC203
 Year 2000 Test Methods204

1 Overview205
 The Test Method Recommended Practice is designed to assist organizations and206
individuals in both the assessment of their assets for Year 2000 status and validation of207
their Year 2000 readiness after assets have been remediated. The problem domain that208
the technology community is facing is how to assess system elements within their209
organization that may be at risk of failure due to Year 2000 related problems. This210
problem may affect software, firmware, hardware and data elements. The private211
enterprise, government agencies and the military all face the possibility of failures.212
Because the problem is pervasive, this recommended practice will not focus on any213
particular platform, technology or industry. This Recommended Practice is not a214
certification. It is a template that can be customized by each organization to help in the215
creation of Year 2000 Test Plans and Test Scenarios for the technical assessment,216
verification and validation of their individual assets. Each organization will need to217
prioritize and apply good Engineering Test Methodology when executing Year 2000218
testing activities.219
 220
 The procedures in this document are not intended as a certification. This document’s221
intent is to serve as an outline to help guide personnel responsible for testing Year 2000222
problems and isolate troubled areas found during Year 2000 remediation. Subsequent223
sections provide a non-exhaustive list of system elements and components that may224
have difficulty transitioning into the Year 2000. The list should be compared against the225
functions and procedures used by the system, similar system elements should be tested.226
The system elements at-risk and the sample test assertions are to be used in227
cooperation to enable a testing organization to create customized test assertions for228
specific assets, whether software, firmware, hardware and data elements.229
 230
 This Recommended Practice is divided into six areas. The first area contains information231
on the scope and purpose of the document. The second section lists supporting232
information necessary for implementation of the procedures in this document. The third233
section contains definitions of terms used within this document. Section 3 gives a234
description of the test case outline used in Section 5 and provides important warnings.235
Section 5 supplies guidance on methodology, process, and testing impact of different236
remediations, validation and reporting for testing of Year 2000. In section six there are237
example system elements and features that have a high probability of being affected by238
date based algorithms and therefore could fail if not designed to operate on both sides239
the 1999 to Year 2000 boundary. This area also contains example test assertions that240
are generic in nature and correlate with system elements. Section 7 is annex data that241
may be valuable, but is provided for informational purposes only.242

1.1 Scope:243
 The scope of this document is to identify Recommended Practices for defining a user-244
specific test plan for Year 2000 validation. They include:245
 246
• A taxonomy of system elements and features which are likely to exhibit Year 2000247

failures,248
• Test scenarios which may be used as templates for the creation of test cases to249

detect defective system elements with respect to the Year 2000, and250
 251
• A customizable methodology and process for determining the testing impact of252

various remediation techniques, validation techniques, and documentation of test253
results.254

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

8

 255
 Significant engineering judgement must be exercised by the user of this document in256
applying its recommendations; it is not intended that these practices be employed in a257
mechanical or rote fashion. It should be used to supplement standard testing procedures258
that encourage proper coverage and consistency of testing.259

1.2 Purpose260
 This document is to provide users of computer hardware, firmware, software or data.261
Systems with Recommended Practices for assessing and demonstrating the system262
element’s within their organization that may be at-risk of failure due to the Year 2000263
problem and related date-specific issues.264

1.3 Assumptions265
 The examples and test cases used throughout this document assume the following266
conditions are true unless otherwise stated:267

• Existing systems are complete, stable, and tested and all features work268
according to a specification, documentation or a functional baseline or a269
specific agreement among the parties.270

• Once changes to the code have been made to correct Year 2000 problems,271
a regression test or appropriate function test is executed to validate that272
system functionality including impacted date functions are working correctly.273

• The system element’s date/time formats are convertible to the Gregorian274
Calendar for the relevant range of dates over which the test cases will run.275

• Testing is performed in an environment that will not damage or impact real-276
world data. (See the sub-clause 4.2 Warnings.)277

• The test facility has the ability to change the time clock of the system or278
simulate its change and in some cases age data.279

 280

2 Normative references281
 282
 The following standards contain provisions that, through references in this text,283
constitute provisions of this recommended practice. This recommended practice shall be284
used in conjunction with the following standards.285
 {1} IEEE Standard 2000.1 1998 Information technology – Year 2000 Terminology286
 {2} ISO 8601:1988 Data Elements and Interchange formats – Information exchange –287
Representation of Dates and Times288
 {3} IEEE Standard 100 1997289
 290

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

9

3 Definitions291
 For the purposes of this recommended practice, the following terms and definitions292
apply:293

 294

3.1 acceptable deviation295
 In the context of evaluating specific test case post conditions, a deviation is296
permitted based on an informed decision to specify that deviation as non-critical.297

3.2 bridge298
 A bridge is a system element which converts from one data format to another.299
Bridging can be incorporated in most Year 2000 remediation to interpret date-data300
formats. This may be helpful in transferring dates between date formats for301
remediated system elements and those used in the original system. There may302
also be situations in which multiple remediation techniques requiring different date303
formats are used, creating a need for bridges between them.304

3.3 failure305
 Any deviation from specified post condition of a test case is considered a failure306
for that specific test case. Post conditions should require adherence to the307
specification, documentation or functional baseline for the system.308

 309

3.4 future regression310
 Regression testing provides a quick way to test broad areas of a system’s311
functionality. Future regression testing expands the normal regression process to312
include future data, and advanced system dates.313

3.5 Gregorian calendar (G)314
The revision of the Julian calendar in 1582 by Pope Gregory XIII. Since the earth315
orbits the sun in an average of 365.24219 days not 365.25 days the Julian316
Calendar gradually fell out of sync with astronomical events used to set the dates317
of some holidays. To compensate it was decreed that Thursday, October 4, 1582318
would be directly followed by Friday, October 15, 1582 in the Gregorian calendar.319
The elimination of the 10 days would affect calculations that spanned that period.320
The rules governing the occurrence of leap year were modified to adjust the321
calendar to more closely reflect the celestial year. In the Gregorian Calendar a322
year is a leap year if it is evenly divisible by 4 unless it is also divisible by 100. In323
addition any year evenly divisible by 400 is considered a leap year. The Gregorian324
Calendar was gradually adopted by most western nations between 1582 and 1752,325
and has remained in use to the present.326

3.6 Julian calendar (J)327
Introduced in Rome in 46 BC, the Julian Calendar established a 12-month year of328
365 days with every 4th year having 366 days resulting in an average year length329
of 365.25 days.330

3.7 Julian date (JD)331
The term Julian date has been used for a real number representing the number of332
days from a specified start date in many systems. Officially a Julian date is a333

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

10

representation in which a real number specifies the number of days and fractions334
of days since noon of January 1, -4712J (the equivalent Gregorian date/time is335
noon on November 24, -4713). Some confusion occurs because of the existence336
of a modified Julian date (MJD) with a start point of November 17, 1858G. The337
documentation of some systems use the term ‘Julian Date’ to refer to either an338
ordinal date or a value equal to the number of days from a start date specific to339
the system. When Julian dates are used in a system it is best to research the340
system specific meaning of the term.341

3.8 Lilian day number (LDN)342
A Lilian Day Number (LDN) is defined as the number of days since October 14,343
1582 on the Gregorian calendar. Confusion arises because October 14, 1582 is344
skipped in the Gregorian calendar. LDN 0 therefore has no equivalent Gregorian345
date. LDN 1 falls on October 15, 1582. For other non- integer date numbering346
systems see 2.11 Relative Integer Dates (RID) below. As with Julian dates it is347
best to research the system specific definition of the term ‘Lilian Date’.348

3.9 ordinal date (OD)349
A form of date notation that consists of a year value and an integer value350
indicating the number of days from the beginning of the year. For example 1997-351
1-13 is 1997-013 in ordinal notation. The day value ranges from 1 to 365 normally352
and 1 to 366 in leap years.353

3.10 pass354
The lack of any deviation from the expected post condition of a test case signifies355
a pass for that specific test case. Adherence to specification or documentation or356
functional baseline indicates a pass.357

3.11 real time clock (RTC)358
A hardware system element that provides the system with a reference to real359
world time. A common implementation would be a circuit containing a set of360
registers holding the current month, day, year, day-of-week number and other time361
related values along with a circuit that continuously updates these register values.362
The circuit is normally provided with an alternate power source such as a battery363
that allows the RTC to continue to function when main system power is not364
available.365

3.12 special logic366
Many programs use specific dates to trigger exceptions to normal date processing.367
A common example is expiration date on tape archives. Rather than adding368
another flag to the tape header the date 1999-9-9 is used by many systems to369
mean never expire. Other dates have been used to indicate an unknown or out of370
range date. Since there is no standard for this practice, the specific dates used371
may be difficult to trace. The potential for dramatic failures increases in 1999372
due to Date Code Flags and various other Year 2000 problems373

3.13 system elements374
A system is a collection of components organized to accomplish a specific375
function or set of functions. In this document, system elements refer to any376
Software, Hardware or Firmware components or combination of them that perform377
a specified task.378

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

11

3.14 system time379
The state of any system element that is used to synchronize system events with380
real world events based on a date, time or combination of the two. System time is381
usually maintained in a hardware system element that is protected against382
unintentional changes to its value that might be caused by a system reset or a383
local power outage.384

385
This standard refers to the time source as a Real Time Clock (RTC) to distinguish386
it from the system clock that synchronizes the internal processor functions. The387
RTC may be read directly, but more often its contents is stored in another clock388
register that is incremented separately from the RTC. The two times may be389
synchronized at specified intervals or only when the system is started. An example390
is the X86 based PC that has a battery backed RTC. At start up the RTC is used391
to determine the date and time. These values are reformatted and placed in392
memory. From then on the Time and date are incremented by the System BIOS.393
Some operating systems may maintain another clock that is updated by the394
operating system itself. Changing the system time requires resynchronization of395
the clocks.396

397
Distributed systems, including networks and plant automation systems may have398
multiple RTCs residing in many individual components. The concept of system399
time assumes that these clocks are synchronous or nearly synchronous. This may400
be accomplished by automatically setting each individual RTC to the value of a401
designated master RTC. In Asynchronous systems individual RTCs may be set402
manually, introducing a error to the system time that might be several minutes.403

404
Some systems do not have, or need a system time. This may be true of405
Countdown timers, calculators, simple logical controllers and other systems or406
system elements that perform in exactly the same manner regardless of the date407
or time. Caution should be used in identifying these systems since there is a408
possibility that a timer based on Gregorian dates may be used to implement409
timing functions even though there is no external reference to the date.410

3.15 user defined date systems411
Some users may implement locally developed date systems used to track user412
specific events. For example manufacturing, production or Just–In-Time (JIT)413
dates. Methodologies developed for verification of Year 2000 issues associated414
with the Gregorian calendar may need to be adapted to apply to user defined date415
systems.416

3.16 Year 2000 rollover417
The instant when a system’s year changes from 1999 to 2000. In a system that418
uses a six-character date format this is a transition from 99-12-31 (YY-MM-DD) to419
00-01-01 (YY-MM-DD).420

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

12

4 General requirements and warnings421

4.1 Editorial conventions422

4.1.1 Test case format423
The sample test cases included in this Recommended Practice have been made424
as general as possible. Every effort has been made not to rely on the feature set425
of a specific system. In many situations the actual process necessary to execute a426
step may be much more complicated than indicated in these test cases.427

428
Test cases are developed to satisfy various test objectives. Information elements429
common to a test or test case include Test Scenarios, Test objectives, Test430
conditions, Test procedures, and Expected test results:431

4.1.1.1 Test scenarios432
Most test cases are proceeded by a paragraph explaining the choices made in the433
test design and their intended results. In many cases the test data or procedures434
will need to be modified in order to fit a specific situation. The initial paragraph is435
intended as an aid to understanding the purpose of the test case so that it can be436
used as a model for other test case designs.437

4.1.1.2 Test objective438
This is a one or two line statement of the purpose of the test case.439

4.1.1.3 Test conditions440
Settings that need to be modified from normal operating parameters are noted in441
this area.442

4.1.1.4 Test procedures/results443
Procedures are actions necessary to cause an observable result. The test format444
used here presents the procedure, the result, and a step number in a table to445
enhance readability. In some cases several actions may be required to produce a446
single result. In these instances the result column is left blank until the step where447
the final action in the sequence is completed.448

4.1.1.5 Test dates – holidays449
Holidays vary by jurisdictions in terms of both legal and cultural context.450
However, these may require specific action related to pay-rates, intrusion alarms,451
or secure area access. Examples of holidays are used in this document, mostly452
referencing U.S. “National” holidays. Users of this document should be aware of453
the diversity and variation of holidays where their operations are concerned, and454
adapt these examples for these contexts.455

4.2 Warnings456
The warning section is designed to highlight potential areas of risk resulting from457
testing. This section may provide suggestions on how to avoid loss or damage to458
system or system elements. Ensure that a disaster recovery plan is up to date and459
operational for restoration of production data in case of loss. Fully outlining a460
process for creating a disaster recovery plan is outside the scope of this461
document.462

463

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

13

As noted in section 5.2.4 Build test environment, it is best to conduct all tests464
on a duplicate system when possible.465

466
Complete backups of all corruptible data storage devices are essential.467
Consider maintaining a second set of media (Hard disks on sliding brackets, Disk468
Packs, tapes, etc.) with the unremediated system installed on them.469
Embedded systems may pose special safety problems both because they often470
operate autonomously and because they may control systems with the potential to471
do physical harm to equipment, personnel or to the public at large.472

473
One way to alleviate these risks is to remove system control elements from the474
larger system. Disconnecting them from physical outputs and connecting them to475
a device capable of displaying the output state of the controller. These devices476
can be as simple as a multi-meter or breakout-box. Systems with many control477
outputs or critical interactions between input sensors and outputs may require478
software simulations. A simulation can be programmed to respond to the system479
elements control outputs simulate the timing or function of mechanical devices480
and actuate the elements sensor inputs.481

482
While remediation of the system is sometimes done entirely in a software483
simulation the verification and validation of the system elements should be done484
using a hardware interface that allows the actual hardware component to be485
plugged into the simulation.486

487
Simulation can be used to detect the majority of errors before the embedded488
controller is tested in the full system. However, no simulation is perfect.489
Discrepancies between the simulation and the real system can cause failures.490
Careful real world testing should be conducted after testing within the simulation is491
completed.492

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

14

4.2.1 Automated purge: Setting the system date to a future date could trigger purge493
routines causing data loss.494

4.2.2 Data Integrity: Ensure that data integrity is maintained during reintegration of495
system elements after testing/validation.496

4.2.3 Data loss: Adequate backups should be made prior to execution of tests. The497
potential for dramatic loss of data increases in 1999, due to date code flags and498
various other Year 2000 problems.499

4.2.4 Hardware damage: Use of future dates in system elements could damage500
hardware in embedded systems. For example some system elements have501
maintenance triggers that force the system to fuse hardware components, if not502
maintained within the periodic maintenance schedule causing physical damage503
to hardware.504

4.2.5 Security access: Ensure that security accesses are not lost after manipulating505
dates on system. Changing a system date to a future date may result to the loss506
of some or all access codes to the system. In some systems, once a date is507
advanced for test purposes, it becomes impossible to retract the date without a508
full system reinstallation.509

4.2.6 Software license expiration: Software with enforced licensing cannot be tested510
with the system clock set beyond the expiration. The software vendor should be511
contacted to arrange special licensing privileges.512

4.2.7 Software license violation: Making a testing environment by installing copies513
of an application could violate licensing agreements and copyrights. This may514
trigger electronic Licensing Managers to restrict active concurrent copies of the515
application.516

4.2.8 System corruption: Systems whose dates are set to the future may suffer517
operating system corruption upon reset to present date. For example system518
logs may be corrupted with invalid system time values. In cases like these,519
restoration or reinstallation of the operating system may be necessary.520

4.2.9 Systems integration: Incomplete or incompatible remediation techniques within521
a larger system can lead to system or data corruption, either during testing or522
during reintegration. For example, incompatible date formats can lead to523
corrupted data.524

4.2.10 Compiler pre-processors: Extra Caution may be warranted for compiler pre-525
processors where the date retrieval mechanism may differ from and override526
that of the compiler.527

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

15

 528

5 Methodology529
 This section outlines the Year 2000 Life cycle, and details the test methodology as it530
applies to the Year 2000 problem, and the use of test methodologies for assessing and531
testing the systems elements at risk.532

 533

5.1 Year 2000 life cycle:534
 A conversion model comprised of five phases each representing a major Year 2000535
activity. Both the private and public sectors have used this model in addressing their536
respective Year 2000 issues. The five phases are described below:537
 538
• Planning and awareness: Define the Year 2000 problem and gain executive level539

support and sponsorship for establishing the problem as a high priority item for540
resolution. Research and establish a project plan, and obtain budget and resources.541
Note that the planning activities are also relevant to the other phases described542
below.543

• Assessment (inventory): Evaluate the Year 2000 impact on the enterprise; develop544
contingency plans to handle data exchange issues and system failures (dysfunction545
or system crashes); prioritize systems by identifying those that are mission-critical.546

• Remediation (renovation): Convert, replace, eliminate, work around, or encapsulate547
one or more system elements; modify interfaces.548

• Validation (audit): Test, certify, and validate all system elements that have been549
converted or replaced550

• Implementation: Place into production all system elements that have been converted551
or replaced552

 553
 This Recommended Practice does not address the subject of validation within the554
Implementation Phase, which is generally outside the scope of testing/validation555
organizations. However, due to potential interdependencies between any556
remediated/validated system and the operational environment within which it must557
function, there is a likelihood that additional problems will emerge in the Implementation558
Phase. The origins of these problems could be in the remediated/validated system, in559
some other system(s) in the environment, or in the interactions among them. Therefore,560
it is recommended that an effort be made to plan, audit and manage the Implementation561
Phase with the goal of detecting, locating and addressing such problems.562

5.2 Test process563
 Experience with Year 2000 projects indicates that a major portion of the effort is taken564
up by testing. Limited resources, high cost, and restricted project duration make it565
essential that organizations and individuals use an efficient and effective testing process.566
 567

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

16

5.2.1 Establish a test strategy:568
569

It is key to success that the testing strategy be largely driven by business, not just570
technical considerations. It is important to ensure that there is no disconnect between571
those responsible for the general management of the business and those responsible for572
its Information Technology. Neither party in this partnership can arrive at the optimized573
testing strategy for the enterprise alone. Technical managers have a responsibility to574
ensure that business managers have the most current and accurate information on which575
to base key decisions. Business managers have a responsibility to understand the risks576
described in technical terms and to ensure that appropriate funding and resource577
decisions are made to achieve the best possible outcome for the enterprise.578
 579
 A testing strategy is top-level guidance concerning the nature, constraints and desired580
outcomes of a testing effort. It guides the development of all the specific test activities581
that follow. Elements of a strategy can result from testing impacts of the type of system582
or system elements being tested. Factors critical to the success of the testing effort are583
identified. Level of risk and appropriate level of testing effort are identified. Test scope584
and who performs testing is determined. Tradeoffs are identified between competing585
planning factors such as schedule, cost, scope, technological approaches and quality.586
 587
 Many organizations may find that there are not enough resources or time to test all their588
applications for Year 2000 compliance in a conventional or comprehensive manner. For589
those organizations, a prioritization of business functions and their supporting systems590
should be determined. The strategic priority is based on the risk to the enterprise should591
systems fail. This prioritization results in a series of risk levels being defined that can be592
applied to an organization's systems. These risk levels determine the level of testing593
effort required for each system. An example of such a risk hierarchy is presented in594
Annex - D Alternative testing methodology (informative).595
 596
 It is appropriate to understand from the outset what the available time, human and597
machine resource constraints are. The test strategy and subsequent test plans must fit598
within the envelope of what can be done. It is inappropriate and futile to create plans599
and strategies that cannot be executed within the available constraints. It is strongly600
recommended that determining this envelope of constraints be the first order of business601
before elaborate, but unusable plans are developed.602
 603
 The level of testing effort and criteria for completion for a system depends on the604
strategy, risk assessment and remediation technique selected. Completion criteria are605
often expressed as the degree of functional and/or code coverage achieved by the606
testing effort. Testing effort can range from the decision not to test through exhaustive607
testing. Testing effort can have a direct correlation to the risk of operational safety.608
 609
 Year 2000 testing also requires that the differences between system times and610
asynchronous data times are understood and that appropriate date intervals are used611
that are sufficient and appropriate for the system being tested. System time is612
determined by clock mechanisms on the system being tested. The system clock613
provides the increment of time that synchronizes time date-data processing information614
for both function-specific purposes and system operational requirements such as internal615
logs or file time stamping. Data time has to do with the dates used within the data being616
processed, which can be current data or data aged beyond 2000 to reflect a future617
functional need. Testing of both system and data time is necessary, but the dates618
selected should be appropriate for the system under test. For example, the valid date619
interval for a strategic planning system could be from the present to the year 2030. The620
valid date interval for an income tax computation system could be a year or less.621

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

17

5.2.2 Set test objectives622
 Test objectives are an identified set of system elements to be measured under specified623
conditions by comparing date related behavior with the expected behavior. The process624
of establishing Year 2000 test objectives may include a review of the test strategy and625
system requirements. Considering such factors as size, complexity, environment and626
reliability can be helpful in assessing risk associated with the system elements. Testing627
objectives are defined to address portions of system elements that have high risk and628
completion criteria should also be noted. The test completion criteria must be clearly629
defined and measurable.630

5.2.3 Develop a test plan631
 The test plan is a document describing the scope, approach, resources and schedule of632
intended test activities. It identifies test items, the features to be tested, the testing tasks,633
who will do each task, and any risks requiring contingency planning. The test plan634
should clearly specify the metric that defines the end point of the test so that all635
concerned parties can agree when the test is complete. There are many different types636
of metrics. For example, number of test cases run successfully, defect discovery rate637
threshold, or mean time to failure.638
 639
 The Test Plan should be appropriate to the test strategy, objectives and risk. Examples640
of levels of risk and the associated levels of testing effort are presented in Annex - D 641
Alternative testing methodology (informative).642

5.2.3.1 Define tests643
 The full range of system functions that depend on the remediated system elements are644
tested to insure that any changes do not adversely affect related functions.645
Tests address the following considerations in order to satisfy the test objectives:646
 647
• Functional attributes. Determine the functionality of the system elements impacted648

by date variables. Determine the expected outputs from the operational logic that649
acts on these variables. This can be approached from a data-oriented input versus650
output perspective (black box) or from a logic perspective (white box). In order to651
meet the testing criteria established for the system, it may be necessary to analyze652
data structures, code logic or the use of reserved dates or special dates (e.g.,653
quarter end, month end) in the code or operational logic.654

655
The use of aged data is a necessary but not sufficient condition for successful Year656
2000 testing. Both data, which is aged statically, that is, converted permanently to657
an aged condition, and dynamically, converted in process, may be needed.658
Changing the system clock does not age the data.659

660
Aged data are data that have been modified such that date variables within that data661
are changed from their current value to some future date. Normally, the year value662
must be changed to be useful in a Year 2000 testing context. Care must be taken to663
understand such things affected by the change of year, such as day of the week and664
Leap Year, and to either ensure consistency or to account for that difference in any665
testing scenario. An alternative to modifying existing data to an aged state is to666
create test data which has the same aged characteristics as modified existing or667
production data. This data may be data that has no other reason for existing other668
than Year 2000 testing.669

• Non-functional attributes. Evaluate the structural attributes of the system under670
test to identify those attributes which may require date-related testing that are not671
dependent on the system functionality. Such date-related factors include672
performance, usability, maintainability, reliability, availability, serviceability,673

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

18

portability, extendibility, and security. For example, the use of complex windowing674
remediation techniques may reduce the readability of the program code. Portability675
may be a concern if program code is changed on one platform and compiled or676
executed on another.677

 678
• System time, data time and valid date intervals. As noted in the discussion of679

strategy, testing of both system and asynchronous data time is necessary, but the680
dates selected should be appropriate for the system under test.681

 682
• Remediation technique impacts. Testing impacts of various Year 2000683

remediation techniques are described in sub-clause 5.4 Test Impact of684
Remediation Techniques.685

 686
• Special-condition dates. Consider the special-condition dates in sub-clause 5.7687

Special date conditions.688
 689
• Existing test cases. Evaluate existing tests and test data. Some of the needed690

tests may have already been developed during normal development testing or the691
assessment phase.692

 693
• System elements at risk. Review the sample test cases to identify elements at-risk694

and to assist with the creation of tests appropriate to the system. See clause 6695
System elements at risk.696

5.2.3.2 Develop test cases697
 Once tests have been defined, test cases should be developed to fully exercise the698
requirements of the test. Information found within a test case typically includes test699
objective, test conditions, test procedures, and expected test results. An IEEE standard700
for test documentation is listed in Annex - F Informative references (informative).701
 702
 As test cases are developed, other components necessary to perform the tests should be703
defined. For example, test sequencing, test procedures, testing tools and sources of test704
data are identified. Tool requirements can include file comparison tools, date simulation705
tools, date-data aging tools, transaction capture tools, and tools for logical test path706
analysis.707

5.2.4 Build test environment708
 The next step of the process is to create the necessary environment to support testing.709
For example develop test simulations, test automation and test data.710
 711
 Creating the test environment requires care because of the dangers listed in sub-clause712
4.2 Warnings.713
 714
 Critical systems that must remain in operation during remediation and testing may715
require that an isolated hardware environment be used. A baseline should be created for716
this system to ensure that the unremediated test system accurately represents the717
original system. Hardware cost and availability may make exact duplication of the718
original system unfeasible. It may be possible to perform initial tests and remediate on719
some systems using scaled down hardware. It should be noted that any difference720
between the original system and the test environment introduces a risk that the721
remediation will not be successful when moved to the original system. Care should be722
taken to minimize this risk as much as possible. It is highly recommended that the final723

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

19

remediation of the code be tested as thoroughly as possibly on a hardware environment724
equivalent to the system it is to be implemented on.725
 726
 As test cases are being developed, the need for test data to satisfy test case condition727
requirements will become clear. Test data can come from existing test cases or files.728
Data to support specific Year 2000 test cases can be created. Production data can be729
copied and used, but will not contain many high-risk dates or conditions. Adding specially730
developed test data to production data in order to satisfy high risk date testing731
requirements may help to overcome this shortcoming. Consider the use of date732
simulators to evaluate artificially changed calendar dates and the use of an appropriate733
tool to age data.734
 735
 Create test data of dates on both sides of the end points of the valid date intervals, not736
just of the end points and the range within them. Testing invalid dates will provide an737
indication the system’s response in such cases. Make sure all relevant “special dates738
are in test data and dates on either side of them as well.739

5.2.5 Test execution740
 741
 Test execution is the phase most likely to result in damage or loss to the system being742
tested.743
 744
 As tests are being executed, special care should be taken to accurately identify and745
record those anomalies related to Year 2000.746
 747
 The remediation technique may influence the selection of test tools to evaluate test748
results. For example, encoding may require a tool to interpret the codes used and report749
results.750
 751
 Before executing a test case and between test case executions, it is necessary to assure752
the system is in the test base state. Restoring the system to the test base state after a753
test run may involve a number of actions including, in no specific order:754
 755
• Restoring the system time clocks, calendars756
• Reconnecting any network or system757
• Removing any test files and restoring the system to pre-test conditions758
• Reinitializing (rebooting) the equipment759
• Restoring the test data760

5.2.6 Test verification and validation761

5.2.6.1 Verification762
 Verification requires a correlation be achieved between the expected and observed763
results of a test case. Documentation should record either a correspondence between764
the two or make note of deviations. If failures occur that prohibit the completion of tests.765
The test cases should be documented along with the circumstances that precluded their766
use.767

5.2.6.2 Validation768

5.2.6.2.1 Test plan validation769
 Validation of the test plan attempts to ensure that the testing process is comprehensive.770
 771

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

20

 As an example statistics gathered by tools that evaluate the number of branches or772
statements executed during testing versus the total number in the system’s code are773
useful in showing the completeness of regression testing.774
 775
 The techniques in E.2 Coverage analysis are useful in creating a valid test plan. If776
these methods or similar techniques were used during test planning their application777
should be documented during validation.778

5.2.6.2.2 System validation779
 The validation process determines if the system is able to perform the function it was780
intended to perform. For the purposes of this document it is assumed that the system781
under test has been validated at some time. During the assessment and remediation782
process some functionality of the system may be abandoned in order to reduce the783
length of the Year 2000 process. System validation requires that checks be made to784
ensure that any changes to functionality have not affected the systems ability to perform785
its primary functions.786

5.2.7 Summarizing and reporting787
 788
 After the test cases that have been planned are executed, the test report is produced.789
Findings and recommendations are determined. Testing is complete when test790
completion criteria are met. Typical measures include tracking test cases completed to791
test objectives and/or measuring other coverage criteria.792
 793
 Due to the potentially high business and safety risks associated with Year 2000 failures,794
it is important that test documentation be archived. See Annex - C Example795
archive documentation (informative)796

5.2.8 Test reuse797
 In order to facilitate reuse of test cases, procedures and materials, they should be798
archived in such a manner as to recreate the test environment. The need to periodically799
re-create the test environment should be recognized and planned for deliberately. Year800
2000 related testing is not a one-time event. Routine changes in system functionality will801
continue to occur and have to be tested. Regression (baseline) testing of all functions802
whenever change occurs is necessary due to the unanticipated effects of changes in one803
area upon other areas.804

5.3 Impact of external constraints on the Year 2000 testing strategy805
 Technological constraints, business objectives, and the public welfare may be806
considered in designing an appropriate test strategy. The integration of a well-defined807
Year 2000 testing methodology will increase the likelihood of Year 2000 success as808
defined by the business goals of the project. Each system-in-test will have individual809
system elements that are at risk. Understanding the consequences of failure of the810
components can aid in prioritizing the focus of resources on individual testing tasks.811
Decisions as to whether any specific test methodology should be employed should be812
made against the background of these more general considerations. There are no813
universal solutions for the Year 2000 test problem. Factors to be balanced in deriving a814
test strategy may include but are not limited to:815

5.3.1 Business/public considerations:816
• Lost business817
• Cost of failure818
• Cost of litigation819

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

21

• Regulatory Impact820
• Public impact821
• Public safety822
• Shareholder value of public companies823
• Fiduciary responsibilities of corporate or organizational officers.824

5.3.2 Likelihood of failure825
• Amount of changes826
• Type of remediation827
• Complexity of system elements828
• Possibility of workarounds829
• Interoperability of systems (i.e. contagion of failure)830

5.3.3 Parallel development831
 Introducing non-Year 2000 related improvements along with Year 2000 remediation832
jeopardizes Year 2000 testing. This can invalidate the current Year 2000 test baseline833
making Year 2000 test results difficult to interpret.834

5.3.3.1 Restrict new features835
 New features can introduce new requirements for system elements that have already836
been validated in the Year 2000 test process. This may require re-testing all or part of837
the elements previously validated.838

5.3.3.2 Isolate elements839
 It may be necessary to temporarily isolate elements of a system. The isolated section of840
the system should be restricted from upgrades and bug fixes. Year 2000 remediation841
and testing can then be performed on the isolated component, while other elements842
remain available for normal development. As elements are validated, they are integrated843
into the development system and restrictions are lifted. Then a new area is isolated and844
restricted, and the process repeats. Since, development is restricted to areas not845
currently being remediated in the Year 2000 process; they can be integrated more easily846
into the Year 2000 system, thus limiting divergence of the systems.847

5.3.3.3 Synchronizing remediation with ongoing development848
 The pervasive nature of some Year 2000 remediations can mean major structural849
system changes that requires months or even years to complete and test. During such850
an extended period of time, the system being revised for normal development may851
diverge so much from the Year 2000 remediated code that combining and re-testing852
becomes nearly impossible. Breaking the remediation and testing process into discrete853
components that can be completed quickly allows systems to be synchronized on a854
regular basis.855
 856

 857

5.4 Test impact of remediation techniques858
 The relative effectiveness of each form of remediation depends on how centralized date859
handling is in the system element, the range of dates to be processed, and the time860
available to complete the project. The choice of remediation techniques has different861
testing impacts. If date handling is centralized, a relatively small number of sub-862
elements may need to be modified and tested. Drastically decentralized date handling,863
where data is accessed by separate code segments throughout the application, may864
require replacement.865

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

22

5.4.1 Replacement (also called Migration):866
 Replacing a system element is likely to require a larger amount of testing to insure that867
all functionality, including Year 2000 specific conditions, operates as expected. Once a868
baseline for current operation has been established, transition tests and future regression869
tests should also be completed.870

5.4.2 Windowing871
 Testing windowed remediation involves validating both the windowing algorithms and872
that all data falls within the window. Testing should assure that all dates that fall within a873
given date window are retained and dates outside that window are rejected.874

 875
 The logic that allows the century of a 6-digit date to be interpreted may need to be876
implemented at any place where a date is processed. This means that the probability of877
remediation errors is very high because a large number of changes need to be made in878
complex areas of the system. All system elements that process windowed dates directly879
should be considered at risk.880

 881
 Date windows restrict dates to a 100-year range. A system may have several different882
date windows that allow different data sets to have separate ranges. This can increase883
the complexity of testing by causing multiple boundary conditions to occur within a884
system or system element. Unit testing would require human interpretation of multiple885
date representations or the construction of reliable test rigs that could make the886
interpretations for the Test Engineer.887
 888
 System elements that rely on windows should be protected against data corruption from889
input dates outside the window. If restrictions on entering dates outside the input range890
are enforced internally the element may be unit tested. Otherwise each data path that891
brings dates into the window should be checked separately.892

5.4.2.1 Fixed893
Fixed windows are established in the design of the system and are not accessible or894
changeable by the user. The testing impacts for this technique are similar to those895
discussed above. Assure that the correct window was chosen and that its date domain is896
adequate.897

5.4.2.2 Movable898
 Movable windows are set by the user and are normally fixed at that point. The testing899
impact for this technique is similar to those discussed above. The user defined window900
(pivot year) means that the boundaries of the window are not known until the system is901
installed. The testing necessary for the data source and the window algorithm is902
complicated by the need to test multiple boundary conditions that represent the possible903
range of pivot years. It is possible that incompatibilities with other system elements may904
be apparent only with a specific set of boundaries.905

5.4.2.3 Sliding906
 The sliding window technique bases its pivot year on the system date. Testing should907
ensure the system’s ability to transition from one pivot year to another. Care should be908
taken to check that dates at one end of the window are not wrapped to another century909
when the pivot year changes. The other testing impacts for these techniques are similar910
to those for Movable Windowing Techniques.911
 912

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

23

5.4.3 Expansion913
 Expansion requires data and program modification. Testing the ability of system914
elements to interpret the new data type should be performed on every element that915
accesses the data directly. Changes in the input to an element may expand the range of916
its output beyond the original specification. It is necessary to insure that any required917
century information is included in the output, and that the element receiving the data can918
interpret it.919
 920
 Expansion of permanent data stores usually requires the use of conversion programs.921
The conversion programs themselves need to be tested for accuracy in updating the922
entire range of dates in the current data store.923
 924
 A larger date format may increase both the permanent storage and memory925
requirements of a system. Performance testing can be used to gauge what degradation926
may have occurred.927
 928
 Expansion may require the creation of bridge programs to access existing data that,929
because of legal concerns, expense or for audit purposes, cannot be converted to the930
new date format.931
 932
 Expansion normally requires modification of the size of dates in existing record formats.933
If data is accessed via an offset from a specific point in the record that offset may need934
to be changed to compensate for the larger date field. In some cases system elements935
which are not date sensitive but which happen to access the same data source may be936
at risk. This leads to greater levels of test effort.937

5.4.4 Encoding938
 The encoding technique usually requires changing both data and logic. Like windowing,939
program logic may need to be tested and like expansion, other systems that access940
modified data should be tested to ensure their continued compatibility. Groups of941
applications that share date-data may be implemented simultaneously or implemented942
through temporary bridges.943
 944
 The process used to encode existing data will normally include automated conversion945
utilities that should be tested.946
 947
 Encoded data requires decoding for testing. This may add additional risk and resource948
requirements for the test procedure.949

5.4.5 Elimination950
 The retirement of a system or application no longer deemed necessary.951
 952

5.4.6 Data encapsulation953
 It is possible to place bridges around existing data to allow their use within a system954
remediated to use a new date format. It is important to ensure that all access to this955
existing data is through the bridges. If other system elements access existing date data,956
expecting it to be in the remediated format, the remediated element may misinterpret the957
dates or suffer fatal errors. Data Encapsulation can eliminate the need for data958
conversion since conversion is accomplished on the fly. Instead of testing the conversion959
utilities or the converted data, the bridge is tested to insure its ability to correctly960
translate the range of possible data. It may be helpful to isolate the bridge system961
element(s) in order to effectively test. Since this method avoids the date transition,962
future date testing may be fully or partially eliminated.963

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

24

5.4.7 System or system element encapsulation964
 There are several techniques that rely on bridges to isolate existing system elements965
from date-data outside the system elements working domain. For example bridges may966
be created that shift all dates back a preset amount of time allowing the system element967
to process some post 2000 dates as if they were actually prior to Year 2000 rollover.968
 969
 Assuming that the system processes a range of dates prior to Year 2000 rollover970
properly, testing should ensure the bridges ability to shift dates in and out of that range971
accurately. Existing data may need to be modified since dates that were at the beginning972
of the systems old date range may be shifted out of range by the bridges. Error handling973
for out of range dates should also be checked.974
 975
 Shifting dates can affect calculations that compute or are computed from the day-of-the-976
week, leap years, holidays, lunar phases, tidal cycles and other factors that occur on977
different dates from one year to the next. All dates that are shifted are at risk so tests978
should encompass the entire range of dates.979

5.5 Special considerations involving embedded systems980
 Embedded systems pose numerous specific Year 2000 problems, many of which fall981
beyond the scope of this document. For example, the white box testing methods982
discussed involve analysis of programming logic. Embedded systems may be983
configurable by the user and may be interfaced with other systems or devices, but they984
may not be programmable by the user. Obtaining access to and interpreting the internal985
programming of embedded systems may be a complex and time-consuming process.986
Evaluation of risk and resource limitations may counsel against such efforts.987

 The black box testing methods discussed may often be more appropriate for embedded988
systems. Embedded systems may have specialized and circumscribed user interfaces,989
making it difficult to prepare and input appropriate test data to the system, and monitor990
and evaluate the associated system output. Embedded systems may function largely991
through specialized interfaces with other systems, for example, data acquisition and992
control and communications interfaces. Identification and correlation of the input and993
output of an embedded system interfaced within a larger, more complex system may not994
be an appropriate allocation of testing resources in light of the risks posed by a particular995
embedded system.996

 Nevertheless, many of the test procedures in clause 6 System elements at risk, may be997
adapted for use with embedded systems. Examples include testing special-condition998
dates, date formats, event-triggers, and date interval and arithmetical calculations.999

5.5.1 Supervisory distributed control systems (DCS)1000
 Supervisory Distributed Control Systems contain Proportional Integral Derivative (PID)1001
Control Centers that often operate asynchronous to the Supervisory DCS. PIDs do1002
communicate with the Supervisory DCS. Alarms from the PIDs are prioritized as 1)1003
Interrupt driven, for severe alarms, providing occurrence time-date stamps. 2) Polled1004
Alarms for DCS recognition of critical and non-critical alarms, with process variable time-1005
date stamps. Communicated data Logging, Trending, and Predictable functions with1006
integral time-date stamps can also be event driven and aperiodic. The alarms are1007
commonly provided to an alarm summary field and presented to plant operations as an1008
alarm log summary screen, with a printout. Severe alarms are intended, in many1009
instances, to shut down plant operations due to safety concerns. Should a corrupted1010
data packet, time-date alarm occur, plant safety may be jeopardized.1011
 1012

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

25

 PID Controllers and other asynchronous process control loops may contain independent1013
Operating Systems, Firmware and Ladder Logic that runs independent of the1014
Supervisory DCS Control. Independent control nodes support a given process and are1015
self regulating, based on the process demands. Such loops contain system clocks that1016
cumulate calendar functions based on arbitrary initial settings, input by field personnel.1017
Seldom is time synchronization accurate or provided.1018
 1019
 Event driven time-date inputs of alarms, and plant operation trigger points, are provided1020
to the Supervisory DCS Control. During the Year 2000 Time Date transitions, the1021
asynchronous and non-Year 2000 compliant time-date stamped data entering the1022
Supervisory Control could cause fatal errors in programmed time-date driven functions,1023
due to date misinterpretation.1024

5.5.2 User versus manufacturer testing1025
End users of embedded systems may find that their testing efforts are limited by a lack1026
of adequate system configuration information, specifications, access to original code and1027
proprietary testing tools, and availability of qualified testing personnel. For recently1028
designed systems, the manufacturer may already have many of these resources in1029
place. For this reason it is often more cost effective for the manufacturer to test the1030
system. Users of older systems may find that the manufacturer will no longer support the1031
system, making it necessary for the user to test the system or contract for testing with a1032
qualified service provider. Even if Year 2000 certification is available from the1033
manufacturer it may be prudent for the user to test the specific system in its current1034
configuration. Reasons why a particular system or system element may fail while other1035
apparently equivalent systems do not, include but are not limited to:1036

1037
• Different components may be used in the assembly of the system tested by1038

the manufacturer than are used in the system as installed. Although two1039
integrated circuits or other components may be specified as functionally1040
equivalent, difference in their implementation may cause one to have a Year1041
2000 failure while the other continues to function properly.1042

• Embedded systems are often elements of larger systems. As with other1043
systems, improper interfacing between system elements can cause a failure.1044
A manufacturer may not provide Year 2000 certification of an interface1045
between two system elements either because there is a known1046
incompatibility or because the interface has not been tested.1047

• Customization of embedded systems is often necessary to make them1048
suitable to a specific installation. They range from minor modifications in1049
control code to additional hardware requiring new functionality in the1050
controller. A customized embedded system may be ordered from the1051
manufacturer or the system could be modified during installation,1052
maintenance, or system up-grades. Changes in hardware or code may1053
cause the custom system to suffer functionality failures that do not occur on1054
the standard system a manufacturer uses for testing.1055

• Documentation may specify methods for use, including limitations on date1056
formats and ranges that could affect application of the technology in a1057
broader systems context.1058

Interchange of data with other systems or components may require use of1059
vendor defined “proper” formats.1060

5.5.3 System isolation to accommodate safety concerns1061
Embedded controls are often used in situations where there is a high risk to property or1062
personnel. To reduce this risk, control systems can often be isolated from the systems1063
they control. This allows the controller to be tested while virtually eliminating the physical1064

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

26

risks associated with the system. Generally this means disconnecting the controller and1065
plugging its inputs into devices that can generate the signals needed for testing and its1066
outputs into a monitoring circuit. Simulation techniques discussed elsewhere in this1067
section are a good way to accomplish this and reduce the physical risk associated with1068
testing these systems. In some cases it may also be possible to dry run a system or1069
substitute less hazardous materials to reduce the risk of potential damage during testing.1070

5.5.4 Date simulators1071
The system time on some embedded systems may be difficult to change. This is1072
particularly true in situations where critical functions are based on time date information1073
or where synchronization is critical. In certain cases it may be possible to use a date1074
simulator that either replaces the system’s RTC or intercepts requests for the system1075
date/time and returns an advanced system date. In either case it is necessary to ensure1076
that all system date information is obtained from the simulation. If low-level functions are1077
able to by-pass the simulation and access the system RTC directly, any tests run might1078
be invalidated. It is also possible that multiple asynchronous RTCs might exist within the1079
system. If one of these RTCs is not included in the date simulation the presence of two1080
different system dates would, again invalidate testing.1081

5.5.5 Environment simulation1082
Simulating some hardware system elements can allow other elements to be tested in an1083
off-line, controlled environment. In general, a simulation of a system element is1084
designed from the functional specification of that element or by specifying and1085
simulating its internal parts and building the simulation from these parts. A functional1086
specification states how the system element is supposed to function, not how it actually1087
performs. This means testing a simulation tests the specification, not the1088
implementation. For this reason testing of a simulated system element should not be1089
substituted for testing of the actual component. Simulations can be used to create a test1090
environment for other system elements under test.1091

5.5.5.1 Logic testing1092
Simulating all hardware in an embedded system may allow initial Year 2000 testing of1093
the system’s code. This may be especially useful in situations where there is a possibility1094
of damage to equipment or the environment, or injury to personnel. By isolating the code1095
from the hardware it may be possible to find errors in the program’s logic without1096
physical risk. This type of simulation may also be used to allow acceptance tests of a1097
code remediation to be performed off-line.1098

5.5.5.2 Bench testing1099
In certain situations it may be possible to remove a system element and test it as a unit.1100
When testing embedded controllers, simple test scaffolding may not give sufficient1101
information for the test engineer to recognize some types of errors. A simulation can be1102
programmed to emulate the mechanical delays inherent in the system’s hardware and1103
provide sophisticated displays that make errors apparent to the tester. For example a1104
controller attached to a robot arm that welds a part onto an assembly might have a delay1105
in its program to allow the part to be positioned by another robot before the welding1106
operation begins. Simple displays of the controller’s output might show only the1107
movements of the robot’s joints. It might not be apparent if a failure in the delay caused1108
the two arms to collide or caused the welding operation to complete before the part was1109
in position. A simulation that allows the controller to operate a virtual model of the two1110
arms might make this failure apparent without requiring an online test that might damage1111
the robot hardware.1112

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

27

5.5.6 Asynchronous interfaces1113
 Some embedded systems have multiple real time clocks that are set manually by1114
operators and service technicians. The system design usually allows for these clocks to1115
be slightly out of synchronization. An example would be, if day of the week information1116
is not important to the computations based on one or all of these RTCs, then a six digit1117
clock could rollover to 00-01-01 and continue to function properly, even without an1118
indicator for the century. If the clocks are slightly out of synchronization and a1119
comparison or calculation is made between date/times from two different clocks at Year1120
2000 rollover the difference between the date/times could appear to be nearly 100 years.1121
These problems can be intermittent and difficult to track since the error may depend on1122
which clock reaches rollover first and what process is running during transition.1123

5.5.7 Expansion statement1124
Expansion of date fields in embedded code may cause information adjacent to storage1125
locations used for dates to be overwritten or corrupted. It is recommended that after1126
expanding date fields the embedded code be functionally tested to ensure it still1127
performs its intended function.1128

5.5.8 Test duration statement1129
As part of test planning it should be determined how long the subject device, component,1130
or system should be running prior to establishing steady state conditions, how long it1131
should run following a date change, and how long it should run to re-establish steady1132
state conditions. Examples include:1133

5.5.8.1 Pretest1134
Steady state conditions should be established by running the device, component, or1135
system for at least five minutes, or, if the device, component, or system performs a1136
calculation function, then it should run for at least ten calculation cycles.1137

5.5.8.2 Test condition1138
Following a date change, the device, component, or system should be run long enough1139
to determine the success, failure, or acceptability of the test. If the device, component,1140
or system performs calculation functions, then it should be run for at least ten calculation1141
cycles. Complex devices or components (those having multiple processors or1142
sophisticated control software that performs error checking and corrections) should run1143
for several hours as experience has shown that it may take an extended time for small1144
errors to build to a critical enough fault for the device or component to fail. If no1145
calculations are performed the run time following the date change should be based on1146
the complexity of the device, component, or system. Simple devices and components1147
should run for at least five minutes. Systems should also be run for several hours to1148
allow for small errors to build to a critical enough fault for the system to fail. Each test1149
plan should indicate the duration of the run time following a date change and provide1150
some evaluation of its acceptability.1151

5.5.8.3 Power on power off test conditions1152
For power off/power on tests a sufficient time should be allowed to pass to ensure that1153
any capacitor's have time to discharge. Physical inspection or vendor information may1154
be used to determine if there are capacitors that need to be discharged.1155

1156
Another consideration is devices or systems that have periodic update or data clean out1157
functions. Tests for devices with these functions should be of sufficient duration for the1158
device or system to go through the functions at least once. As an example, if a device1159
does a data update every twelve hours, then the device needs to run for at least twelve1160

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

28

hours after the test data is input to ensure that the test data is read by the device and the1161
appropriate pass/failure/acceptable deviation determination made.1162

1163

5.5.9 Sampling statement1164
The purpose of sampling is to ensure that all devices or systems with the same model1165
number have the same Year 2000 functional performance. Test plans should evaluate1166
the need for a sampling plan when the test subject contains multiple instances of the1167
same model devices or systems. One method for achieving this is to use knowledge or1168
logic-based sampling using knowledge of chip sets and Operating Systems to group the1169
devices or systems for testing. Alternatively, random sampling methods may also be1170
applied when knowledge of chip sets and Operating Systems can not be obtained.1171

1172
A useful example of knowledge or logic-based sampling is an organization which1173
chooses to test a set of same model numbered devices with nearly consecutive serial1174
numbers by selecting the earliest and latest serial numbered devices for testing for1175
identical behavior. Given these devices exhibit identical behavior, a further decision1176
might be made to sample randomly and test one or more of the devices within the serial1177
number sequence. Given that all tested devices exhibit identical behavior the1178
organization could then make the decision that all the devices in the original set exhibit1179
the same behavior and results of the performed testing represents results for all the1180
devices in the set.1181

5.6 Special-condition dates1182
 The following is a list of dates that are recommended for consideration in the validation1183
of Year 2000 remediation. This list is intended to be illustrative, but is not exhaustive. It1184
may be appended or modified for a specific environment.1185

5.6.1 1900-01-01 (Monday)1186
 The number of days in a century is not evenly divisible by 7 so no two consecutive1187
centuries start on the same day of the week. If an algorithm disregards century1188
information when making day of the week conversions, incorrect results may occur (See1189
also 2000-01-01).1190

5.6.2 1999-01-01 (Friday)1191
 In many systems the date is parsed into individual year, month and day variables and1192
checks the validity of the date. Often an indicator is needed to trigger logic that reacts to1193
a special situation. If the system insures that the variable is a valid date, a specific year1194
value or date may be used to indicate the special situation. The year ‘99’ and dates1195
within 1999 have been used for this purpose. When the reserved date occurs in normal1196
data, the system may trigger special-condition logic that does not apply to the situation.1197

5.6.3 1999-09-01 (Wednesday)1198
 The four digit date format (YY-MM) is sometimes used, with the three digit input 99-9 as1199
a representation of an unknown or ‘out of range’ date. The input is interpreted to the full1200
date 99-9-1 and stored. As long as the date is outside the range of normal data it is1201
recognizable as ‘place-holder’ data. When the date 99-9 becomes a plausible entry for1202
the field it becomes difficult to tell which 99-9 is a real date and which is a placeholder1203
that needs to be replaced with real data.1204

5.6.4 1999-09-09 (Thursday)1205
 This date is commonly used to indicate an unknown date in 6-character (i.e. 99-9-9) data1206
entry fields that don’t require a leading zero. It was chosen because it was easy to type1207

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

29

and yet far enough in the future to be easily differentiated from ‘real’ dates. As 9-9-991208
nears it will become impossible for the computer or the user to know if the entry is valid1209
or not.1210

5.6.5 1999-09-10 (Friday)1211
 In systems that have used 9-9-99 as a never expire date, logic allowing deletion of data1212
after a specified date may fail to protect data that should be maintained forever.1213
 1214

5.6.6 1999-10-01 (Friday)1215
This is the first day of the US Government Fiscal Year FY2000.1216

5.6.7 1999-12-31 (Friday)1217
 The last day that can be represented in standard 6-digit date format without Year 20001218
rollover risk. This date is sometimes used to trigger special logic. It must be established1219
that the system is able to distinguish between a regular end-of-year 1999 date and a1220
special meaning date. For example, a license key intended to expire on 12-31-99 should1221
not be confused with one that has no expiration date. This is also the start date for most1222
Year 2000 rollover testing.1223

5.6.8 2000-01-01 (Saturday)1224
 The first day of the Year 2000. There are many issues related to this date.1225
 1226
• A system with a day-of-week function based on 6-digit dates may change from1227

Friday 1999-12-31 to Monday 2000-01-01 at Year 2000 rollover. 1900--01-01 was a1228
Monday. A day of the week error could occur on any date after Year 2000 rollover if1229
the calculation to derive the day of the week assumes that all dates have years1230
between 1900 and 1999.1231

• There is a possibility that the date will be misinterpreted as 1900-01-01.1232
• Systems date counters may increment to erroneous dates like 19100-01-01.1233
• Parsing functions may misinterpret dates entered with one or both leading zeroes1234

omitted. (See 5.6.12)1235

5.6.9 2000-01-03 (Monday)1236
 This may be the first business day of the Year 2000. Certain business software1237
calculates using proper business dates and days. Consequently, failures associated with1238
this software would occur at this point. This day may be a holiday, not a business day. It1239
is special from that perspective in that it would normally be a business day, but may not1240
be in this case. It would be the first holiday of the Year 2000.1241

5.6.10 2000-01-04 (Tuesday)1242
 This may be the first business day and first banking day in the Year 2000. Business1243
applications may be sensitive to calculations using proper business dates and days.1244
Consequently, failures associated with this software would occur at this point.1245

5.6.11 2000-01-07 (Friday)1246
 This is the first Friday in the Year 2000.1247

5.6.12 2000-01-10 (Monday)1248
 This is the first 7-digit date after Year 2000 rollover if leading zeros are not used for day1249
and month representations. New or modified parsing functions required by changes in1250
date-input formats or for interpreting an extended input range may fail when the number1251
of digits representing the day changes. Parsing functions may need to be tested with all1252

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

30

possible combinations of dates with one- and two-digit month and year values and1253
combination include and omit leading zeros. (Examples: 2000-1-1, 2000-01, 2000-01-1,1254
2000-01-01, 2000-1-10, 2000-01-10…) Each acceptable date representation should be1255
checked to insure that it is correctly translated into the system’s internal representation.1256

5.6.13 2000-01-17 (Monday - Martin Luther King day - USA holiday)1257
 This may be the first Monday holiday in the Year 2000. This is a holiday that is always1258
celebrated on a Monday rather than on a specific date in the USA. A day of the week1259
calculation may be required to identify this date as a holiday. In other countries a similar1260
situation may exist for locally celebrated holidays on other dates. These dates may need1261
to be tested instead.1262

5.6.14 2000-01-31 (Monday)1263
 This is the first month-end day in the Year 2000. Many programs key on month end as a1264
trigger for a periodic function and may fail here.1265

5.6.15 2000-02-28 (Monday)1266
This date is not expected to cause any specific Year 2000 errors. Its relevance to testing1267
is that it should be used as a start date in testing the system’s ability to increment to1268
2000-02-29. This is necessary because it is possible for a system to recognize 2000-02-1269
29 as a valid date when the date is manually set, while a separate system element1270
increments the date directly from 2000-02-28 to 2000-03-01.1271

5.6.16 2000-02-29 (Tuesday)1272
 The Year 2000 is a leap year. Program logic used to identify leap years may be1273
incomplete. This could cause date processing errors for the remainder of the year.1274

5.6.17 2000-02-30 (Non-existent)1275
 This day does not exist. Date functions should continue to recognize this as an invalid1276
date.1277

5.6.18 2000-03-01 (Wednesday)1278
 This is the first day after leap year day. The date calculations that transition from the last1279
day of leap year February to the first day of March could fail. The possibility exists that1280
some part of a system may fail to recognize Year 2000 as a leap year may lead to a1281
condition where dates are no longer synchronized well as day of the week offsets can1282
occur. This is also the first day of the last month in the first quarter of the Year 2000.1283

5.6.19 2000-03-31 (Friday)1284
This is the last day of the last month in the first quarter of the first year in the Year 2000.1285
Quarter-end dates are significant in business and financial applications.1286

5.6.20 2000-04-03 (Monday)1287
 This is the first business day of the second quarter of the first year in the Year 2000.1288

5.6.21 2000-04-17 (Monday)1289
 Primary U.S. Income Tax due date in the Year 2000.1290

5.6.22 2000-04-28 (Friday)1291
 April is the first business month whose last day coincides with a weekend in the Year1292
2000. This is the last business day of April.1293

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

31

5.6.23 2000-04-30 (Sunday)1294
 This is the first month-end that coincides with a weekend in the Year 2000.1295

5.6.24 2000-06-30 (Friday)1296
 This is the last day of the last month of the second quarter. This is the half-year point as1297
well as the end of the fiscal year, or business cycle, for many businesses. This is the1298
last business day of the first quarter end in the Year 2000 which coincides with a1299
weekend.1300

5.6.25 2000-09-29 (Friday)1301
 Last business day of the third quarter in the Year 2000.1302

5.6.26 2000-09-30 (Saturday)1303
 This is the last day of the government fiscal year and last day of the third quarter of the1304
Year 2000.1305

5.6.27 2000-10-01 (Sunday)1306
 This is the first 7-digit date with a 2-digit month value. Parsing functions may need to be1307
modified to allow for new date formats and a wider range of date-data during the1308
remediation process. If leading zeros are not required for date-input, the date value1309
entered might change the placement of numeric values for month, day and year within1310
the input string. A parsing function that doesn’t allow for this input variation might1311
interpret 2000-10-1 as 0200-01-01 or might interpret the punctuation as part of the day or1312
month value.1313

5.6.28 2000-10-10 (Tuesday)1314
 This is the first date, after rollover that must be represented as an 8-digit date. Parsing1315
functions may fail when the number of digits changes. This is similar to failures1316
discussed in sec.5.6.27, but could result from misinterpretation of either the month or1317
year value.1318

5.6.29 2000-12-31 (Sunday)1319
 The last day of the Second Millennium of the Gregorian calendar. The ordinal date 1900-1320
365 was the last day of 1900. Since 2000 is a leap year, its last day is 2000-366. An1321
incomplete algorithm for determining the length of the year might cause an ordinal based1322
system to transition into the new millennium a day too early.1323

5.6.30 2001-01-01 (Monday)1324
 This is the first day of the third Millennium on the Gregorian Calendar. There is a1325
possibility of errors in computing the day of the week. This is also a holiday and not a1326
business day.1327

5.6.31 2001-01-05 (Friday)1328
This is the first Friday in the year 2001.1329

5.6.32 2004-02-29 (Sunday)1330
 First leap day after Year 2000 rollover not affected by a century or millennium transition.1331

5.6.33 2004-12-31 (Friday)1332
 This date can be used to determine if normal leap years are recognized by an ordinal1333
date system.1334
 1335

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

32

5.7 Special date conditions.1336

5.7.1 Out of range1337
 Any real date that can not be represented in the system’s or system element’s internal1338
date format is considered an out of range date. Out of range dates might include dates1339
outside a system element’s date window, or before the start date of an integer offset date1340
representation. The range of dates used will depend on the system implementation.1341
They may be used in testing to determine the system’s ability to protect data from1342
corruption. If not recognized and rejected these dates may be wrapped into the1343
acceptable range or misinterpreted in some other way, and introduced into the system.1344
This could lead to data corruption.1345

5.7.2 Nonexistent dates1346
 Dates with field errors, such as a month value of 13 or the 31st day of a 30-day month1347
should be included in test data. This should be done to ensure that the system retains its1348
ability to recognize these dates, reject them, and recover gracefully.1349
 1350
 Common field error dates:1351

 0000-xx-xx1352
 1999-02-291353
 2000-xx-001354
 2000-00-xx1355
 2000-02-301356

 2000-04-311357
 2000-06-311358
 2000-09-311359
 2000-11-311360
 2000-13-xx1361

 xx – Indicates a ‘don’t care’; any value in these fields indicates a nonexistent date1362
 1363
 In some systems nonexistent dates may be used to indicate a special-condition such as1364
an unknown or out of range date. If allowances are not made for the continued use of1365
these dates the remediated system may reject or misinterpret them. This could result in1366
a loss of system functionality. Tests for indicator dates should return a predictable result1367
in accordance with the systems specifications.1368
 1369
 Common indicator dates:1370

 0000-00-001371
 1999-99-991372

 2000-00-001373

5.7.3 Flag codes1374
 Dates that have memorable patterns such as 99-9-9 or 99-1-1 may be used by some1375
systems to override normal date processing and start a routine to handle specific1376
condition flags.1377

5.7.4 Year 2000 rollover1378
 The transition between 1999 and the Year 2000 may affect a date counter’s ability to1379
increment properly causing an error at the moment of transition. Comparisons and1380
computations based on dates may give erroneous results if operations span rollover.1381

5.7.5 Leap year conditions1382
 In the Gregorian calendar 1900 was not a leap year, but the Year 2000 is. A system or1383
system element that represents both years as 00 may process both years as a leap year1384
or as a non-leap Year. The ability of a system to recognize 2000-02-29 and not 1900-02-1385
29 affects calendars and date displays as well as computations using a span of time1386
including either of these dates.1387

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

33

5.7.6 Date comparisons using inequalities1388
 It is often necessary to determine which of a pair of dates is prior to the other. If the date1389
values being compared only include the two least significant digits of the year and they1390
fall on opposite sides of the Year 2000 rollover, the operations used to compare them1391
may return inaccurate results.1392
 For example:1393
 1394
 The 4-digit comparison gives the correct result,1395

 2000-02-15 > 1999-12-15 = true1396
 while its 2-digit equivalent gives an incorrect result1397

 00-02-15 > 99-12-15 = false1398

5.7.7 28-year repetition1399
 Any two dates between 1900-03-01 and 2100-02-28 that are 28 years apart will have the1400
same day of the week associated with them. In cases where the results of tests are1401
related to the day of the week, running the test cases twice with all dates 28 years apart1402
allows the results to be compared for equivalence. This can help to eliminate the need to1403
calculate test results by hand for these tests.1404

5.7.8 Computed day intervals1405
 Time intervals may be computed by subtracting one date from another. If the operands1406
for the subtractions are dates with only a 2-digit year, the computation may give incorrect1407
results when the date range includes the Year 2000 rollover.1408
 1409
 For example:1410

 1411
 The 4-digit comparison gives the correct result,1412

 2000-03-01 – 1999-12-31 = 61 days1413
 while its 2-digit equivalent gives an incorrect result.1414

 00-03-01 – 99-12-31 = -36464 days1415

5.7.9 Increment and decrement date by a count1416
 Computing a target date a specific number of days prior to or after a given date may fail1417
when the target and given dates would be on opposite sides of the Year 2000 rollover.1418
Adding or subtracting enough days to cross the Year 2000 rollover may create a two-digit1419
year value that is either negative or greater than or equal to 100. The system may not be1420
able to convert these dates into standard date formats reliably.1421

5.7.10 Day of the week numbers1422
 It is generally easier for a computer to manipulate numbers than strings so day of the1423
week strings are often enumerated and referenced by the associated number. The day of1424
the week number can be calculated by computing the interval between the date in1425
question and a reference date and taking the result modulo 7. As noted above, the1426
ability to compute date intervals is at risk, so the results of Day of the Week calculations1427
based on them is also at risk.1428

5.7.11 Ordinal dates1429
 When an ordinal date format is used, a leap year calculation based on the year value1430
determines if the date XXXX-366 (where XXXX represents the year) exists in a particular1431
year. Errors in identifying a year as leap year affect calculations of time intervals and1432
conversions to other date formats. 1433

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

34

5.7.12 Windowing dates1434
 System elements that use date windows have defined boundary conditions that should1435
be tested. Boundaries of windows may be different from the valid date interval of the1436
system and should be specifically tested.1437

5.7.13 Day of the week1438
 Calculation of the correct day of the week may involve logic to identify leap years,1439
convert one or more date formats into Day of the Week numbers, interpret date windows1440
or any number of other errors mentioned elsewhere in this list.1441

5.7.14 Calendar date to ordinal (Julian) conversion1442
 Failure in these types of procedures is usually related to misinterpretation of leap year1443
causing the resulting date to be off by one.1444

5.7.15 Local date formats1445
 Systems that have multiple date display formats usually have an internal date1446
representation that is converted to a formatted string for output. A separate function may1447
be used to convert from the internal representation to each individual local date format.1448
Errors can occur because the internal representation doesn’t contain enough information1449
to distinguish dates in Year 2000 from earlier dates. It is also possible that individual1450
conversion functions may not be able to interpret the larger input values that represent1451
Year 2000 dates.1452
 1453
 The internal date representation of a system is usually set from an RTC using BIOS calls1454
to transfer date-data from the RTC to the system clock. For globalization purposes a1455
system may represent external date in a locally used calendar while one or all of these1456
internal system elements may represent dates in the Gregorian system. Any one of the1457
internal elements or the system element that converts the system date to a local date1458
format may fail when the RTC encounters Year 2000 rollover. This can happen whether1459
or not the local date format has any corresponding date transition.1460

5.7.16 Daylight savings time (Summer Time)1461
 Daylight savings time changes occur on the first Sunday in April and the last Sunday in1462
October in the United States. Other countries may have different dates for initiating and1463
terminating the “Summer Time”. This means that systems using time standards that1464
include Daylight savings must use day of the week information to define if a date falls1465
within the affected period. As described elsewhere in this list Day of the Week1466
calculations may fail during Year 2000.1467

5.7.17 Year and month extraction values1468
 The methods for extracting the day, month or year value of a date is dependent on the1469
storage format of the date. Each format has its own potential problems.1470

5.7.18 Time zone offsets1471
 Information passed between system and system elements is often associated with a time1472
stamp. In Wide Area Network environments the receiving system may be in a different1473
time zone than the originating system. This creates a situation where one system may1474
rollover into Year 2000 while the other continues to operate in 1999 for several hours. If1475
the time stamps include only 2 digit year values the receiving system may assume the1476
information is invalid since the time stamp associated with it is either 100 years old or1477
100 years in the future.1478
 1479

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

35

 In some cases, a system may use a single time reference, such as Coordinated1480
Universal Time (UTC), ZULU time or Greenwich Mean Time, for all system elements1481
regardless of their local time zone. This may be hidden from the user by converting1482
date/time groups to local time for I/O purposes. A failure can occur when the offset1483
between system time and local time crosses Year 2000 rollover.1484
 1485
 It should also be recognized that not all time zones are an integral number of hours and1486
conversion algorithms that use data that spans different time zones must be prepared to1487
deal with these non-integral time zones. Examples of countries that contain such zones1488
are parts of Australia, India, parts of Canada, Iran, Nepal, Sri Lanka and some Pacific1489
Islands. Further, some Pacific Islands have a shift to Daylight Savings Time that is not a1490
full hour and that also must be taken into consideration if the data is from or is intended1491
to be transmitted to such places.1492

5.8 System components to be tested1493
 Effective system testing may involve the creation of test cases that act on or require1494
various combinations of the following system components. The test cases presented in1495
the following sub-clauses should be considered in the context of each component.1496

5.8.1 System element1497
 System elements may be tested before and after remediation. This can include but is not1498
limited to software, hardware, and firmware. Test cases should validate that no desired1499
pre-existing functionality has been lost (regression testing) and that new 'Year 2000'1500
functionality works as expected (compliance testing).1501

5.8.2 System data1502
 Systems should be tested using data having current dates and dates that have been1503
advanced to beyond the Year 2000. Date-data that have been advanced beyond the1504
Year 2000 may be referred to as aged data. Existing data can be aged or Year 20001505
data set can be created to meet testing requirements. Systems should also be tested1506
with the system date in or post Year 2000 with data from before year 2000. 1507

5.8.3 System time1508
 Systems may be tested using current system time and with the time set beyond the Year1509
2000. Setting a system time to beyond 2000 may allow the testing of many system1510
factors not normally observable using current time. These factors include the operating1511
system utilities that use internal time stamps, system archiving or backup utilities and1512
other aspects of the internal operation of a system.1513

5.8.4 Data and time combinations1514
Test cases should represent all combinations of system time and date-data that are1515
possible during the system’s transition into the Year 2000.1516

1517
• System time prior to Year 2000 with data before Year 2000.1518
• System time prior to Year 2000 with data after Year 2000.1519
• System time post Year 2000 with data after Year 2000.1520
 System time post Year 2000 with data before Year 2000.1521

6 System elements at risk1522
 This section is an attempt to outline example system elements or features that have a1523
potential of being affected by date based algorithms and, therefore, could fail if not1524
designed to cross the Year 2000 rollover. Special condition dates and example test1525

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

36

assertions are included that are generic in nature and correlate with certain system1526
elements and that can be customized for specific needs.1527

6.1 Interfaces: Shared control blocks/API/DDE/OLE1528

6.1.1 Definition1529
 (API) Application Program Interface -The interface by which an application program1530
accesses operating system and other services. An API is defined at source code level1531
and provides a level of abstraction between the application and the implementation.1532
 (DDE) Dynamic Data Exchange - A protocol that allows application programs to1533
communicate using a client-server model. Whenever the server modifies part of a1534
document, which is being shared via DDE, one or more clients are informed and include1535
the modification in the copy of the data on which they are working.1536
 (OLE) Object Linking and Embedding - Allows an editor to place part of a document into1537
another editor and then re-import it.1538

6.1.2 Rationale1539
 In transferring date information, these functions may use an intermediate date-data form,1540
which might not support proper handling of century date information. It is necessary to1541
compare source information to destination information to ensure accurate date-data1542
transfer.1543

6.1.3 Related elements - none1544

6.1.4 Test cases1545

6.1.4.1 OLE1546
 Change of a date field in an application results in a corresponding change in a linked1547
application.1548

 I Test objective1549
 Verify that changing a linked high risk Year 2000 date that is in a Master
application (e.g. spreadsheet, database and presentation) will change the
corresponding date in a linked Slave application.

 1550
 II Test conditions1551
 Two applications with linked date-data. Have a master application one with date
field that is linked to a corresponding field in a slave application.

 1552
 III Procedure/results 1553
 # Test procedure Expected test results
 1 Master – Change date field in

application to one of the high-risk
Year 2000 dates.

 2 Slave - View the date field in
second application that has an OLE
link.

 The date-data field will be updated
to high-risk Year 2000 date.

 1554

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

37

6.2 Archiving/restoring1555

6.2.1 Definition1556
 The transfer of data files to and from a long-term storage device, for example magnetic1557
tape.1558

6.2.2 Rationale1559
 Most archives specify a retention date or interval. Archiving systems must be able to1560
accurately compute and compare these dates through Year 2000 rollover and beyond1561
2001. If the dates used don’t include century information an archive recorded in ‘97 with1562
a retention interval of 5 years would be dated for deletion in 02 and might be considered1563
‘95 years old at its creation.1564
 1565
 The problem is compounded by the use of certain dates as special logic indicators. In1566
some applications year fields with the values 00 or 99 are used as indicators for records1567
that have no expiration. Without modification, these applications might save all archives1568
dated for deletion in 1999, 2000 or on specific days in 1999 and 2000 indefinitely.1569
Depending on the retention duration, some systems may already be storing archives that1570
should be deleted when their retention date has passed along with archives that use the1571
same date value to indicate that they should never be deleted. Leaving no easy way for1572
the system to distinguish between them.1573
 1574
 It is also necessary to insure that the remediated system can restore archives that1575
existed before remediation. This may be accomplished by converting legacy archives to1576
the remediated date format as part of the remediation process, by giving the restore1577
system element the capability to convert Legacy data to the remediated format on the1578
fly, or by encapsulating the legacy data archives. It is highly recommended that a copy1579
of the unmodified archive system be maintained to perform restorations in case there is1580
a compatibility issue with legacy archives.1581

6.2.3 Related elements1582
 Backup & Restore1583
 Calculations1584

6.2.4 Test cases1585

6.2.4.1 Archiving/restoring files1586

6.2.4.1.1 Deletion on specified date1587
 Some archives allow the user to assign an archive expiration date and tag the archive1588
for automatic deletion. This may be used as a security feature to keep unnecessary1589
sensitive information from accumulating on systems. It is necessary to verify that the1590
system will not prematurely delete needed information while retaining its ability to purge1591
those files that have passed their expiration dates. The specification for the example1592
system states that the archive is retained until the last minute of its expiration date.1593
 1594

 I Test objective1595
 Verify that an archive can be set to automatically purge on a specified date
during the Year 2000.

 1596
 II Test conditions1597
 # Conditions
 1 Standard operating environment

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

38

 2 Set of test files to be archived
 1598

 III Procedure/results 1599
 # Test procedure Expected test results
 1 Set the system date to a date

prior to 2000-01-01 Year 2000
rollover. Create an archive. Set
the archive retain date to 2000-
01-01. Set system date and time
to 2000-01-01 23:50:00. Open the
archive and view its contents.

 Archive should open and have all
archived files.

 2 Close the archive and wait until
system clock reads 2000-01-02
00:01:00. Attempt to open the
archive.

 A message should say that the
archive does not exist.

 3 Repeat steps 1 and 2 with the
following dates.
 2000-01-10
 2000-02-29
 2000-10-01
 2000-12-31

 The above results 1 and 2 should
be repeated for each date.

 1600

6.2.4.1.2 Deletion after retention period1601
 Automatic archive systems may periodically delete older archive files. This function may1602
be used in situations where documents have to be held for a specific period in order to1603
meet legal requirements. The sample test case is written for a system that requires the1604
archive be saved until midnight of the last day of the retention period. This could be1605
specified as:1606
 1607
 IF ((Archive_Creation_Date + #Days_To_Retain) < Current_Date) Delete Archive1608
 1609
 Note: The comparison requires the number of days in the retention period. The system1610
may have to calculate this value from month or year values or combinations of month,1611
day and year (i.e. 3 months and 11days). See sub-clause 6.4 Calculations.1612
 1613

 I Test objective1614
 Verify that archive files will be purged after a specified interval that spans Year
2000 rollover.

 1615
 II Test conditions1616
 # Conditions
 1 Standard operating environment
 2 Set of test files to be archived

 1617
 III Procedure/results1618
 # Test procedure Expected test results
 1 Set the system date and time to

1999-12-10 12:00:00. Create an
archive with a retain time of 1
year. Set system date and time to
2000-12-10 23:50:00. Open the
archive and view its contents.

 Archive should open and have all
contents specified at its creation.

 2 Close the archive and wait until A message should say that the

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

39

system date changes to 2000-12-
11. Open each archive.

archive does not exist.

 3 Repeat steps 1 and 2 for the
following dates and retain times.

 The above results 1 and 2 should
be repeated for each set of
inputs.

 1619
 First system date Retain time Second System Date
 1999-12-10 31 days 2000-01-10
 1999-12-01 3 months 2000-02-29
 1999-12-01 11 months 2000-09-31

 1620

6.2.4.2 Date expirations set at 19991621
 Some tape systems use a 2-character year with 3 characters representing the day of the1622
year to encode expiration dates. The date 1997-02-01 is stored as 97032 in this1623
representation. When it is necessary to create archives that have no expiration, the1624
dates 99365 or 99366 may be used as indicators. Since many archives are already1625
marked with these dates, a remediation of this type of system should allow for their1626
continued use. This could cause confusion, as program logic will need to distinguish1627
between tapes intended to expire at the end of 1999 and those that use that date to1628
indicate they can never expire.1629

6.2.4.2.1 Date expirations - Test Case One1630
 I Test objective1631
 Verify that archive tapes with a retention date of 1999-12-30 or 1999-12-31 will
expire at expected time.

 1632
 II Test conditions1633
 # Conditions
 1 System date set to a date early in 1999
 2 A set of files to archive
 3 Archive application set to overwrite only if the archive retention date

has expired.
 1634

 III Procedure/ results1635
 # Test procedure Expected test results
 1 Set archive retention date to

1999-12-30. Create an archive.
Set the system date to 1999-12-
30 at 23:55:00. Attempt to
overwrite the archive.

 A warning should appear stating
that the archive is not expired and
the archive should be retained.

 2 Wait for the system to reach
midnight and move into the next
day. Attempt to overwrite the
archive.

 The system should allow the
archive to be replaced

 3 Set the system back to a date
early in 1999. Repeat steps 1 and
2 with the date 1999-12-31.

 The results 1 and 2 should be
repeated.

 1636

6.2.4.2.2 Date expirations - test case two1637
 I Test objective1638
 Verify that existing archives that are marked as, “Never-Expire” won’t be

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

40

interpreted as expired after Year 2000 rollover.
 1639
 II Test conditions1640
 # Conditions
 1 Scratch archive tape created on the modified system with the never-

expire indicator set.
 2 Archive application set to overwrite only if the archive retention date

has expired.
 3 Test system with remediated archive system installed.

 1641
 III Procedure/ results1642
 # Test procedure Expected test results
 1 Set system date to 1999-12-31 at

23:55:00. Attempt to overwrite the
archive.

 A warning should appear stating
that the archive is not expired and
the archive should be retained.

 2 Wait for the system to reach
midnight and move into the next
day. Attempt to overwrite the
archive.

 A warning should appear stating
that the archive is not expired and
the archive should be retained.

6.2.4.3 Archive sequence1643
 Archiving systems may create directories or views of the contents of an archive that are1644
ordered by the modification date of individual files in the archive.1645

 I Test objective1646
 Verify that the files in an archive can be viewed in order by date when files were
created after Year 2000 rollover.

 1647
 II Test conditions1648
 # Conditions
 1 Change the system date to 1999-12-15 in YYYY-MM-DD format.

Create a new file in the application.
 1649

 III Procedure/ results1650
 # Test procedure Expected test results
 1 Set the system date to 1999-12-

31. Create a file.
 The file date should read 1999-12-
31

 2 Repeat step 1 for system date
2000-01-01.

 The file date should read 2000-01-
01.

 3 Repeat step 1 for system date to
2000-2-28.

 The file date should read 2000-2-
28.

 4 Repeat step 1 for system date
2000-02-29.

 The file date should read 2000-02-
29.

 5 Repeat step 1 for system date
2000-03-01

 The file date should read 2000-03-
01.

 6 Create an archive containing the
files created in steps 1-5.

 The archive should be created
without error.

 7 View the archive in increasing
ordered by date.

 1999-12-31 should be at the top of
the list 2000-03-01 should be last.

 8 View the archive in decreasing
ordered by date.

 2000-03-01 should be at the top of
the list 1999-12-31 should be last.

1651

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

41

6.2.4.4 Preexisting archive1652
 As mentioned in the rational for this section, preexisting archives may contain dates in a1653
different date format than the remediated system uses. At some point during the1654
restoration process it may be necessary to convert data from the old date format to the1655
post-remediation date format. This test case checks for data corruption in the conversion1656
process. The test is written using the concept that two separate systems are maintained.1657
It might be more cost effective in some cases to create the legacy test archives on the1658
unremediated system then convert that system to the remediated configuration before1659
completing the test.1660

 I Test objective1661
 Verify that the dates in a preexisting archive are converted to equivalent dates
in the remediated date format when they are restored.

 1662
 II Test conditions1663
 # Conditions
 1 System A: An unremediated system capable of creating an archive in

the legacy format.
 2 System B: A system that is a Year 2000 remediated version of system

A.
 1664

 III Procedure/ results1665
 # Test procedure Expected test results
 1 Create an archive on system A

with a series of data that includes
the boundaries of the legacy
systems valid date interval.

 Archive should be created without
error

 2 If the remediated system requires
that legacy archives be
converted prior to restoration
perform the conversion.

 The conversion process should
complete without error

 3 Restore the archive on system B
and view the restored data.

 Dates from the restored archive
should be equivalent to the data
on system A represented in
System B’s date format.

6.2.4.5 Manual deletion1666
The sample test case is written for a system that computes the retention date of the1667
archive by adding a user-defined retention period to the current system date. An attempt1668
by a user to delete an archive that has a retention-date after the current system date1669
should produce an error or warning message. In some systems special access or1670
privileges may be required to perform these deletions. This test case assumes that the1671
system does not allow the deletion of an archive before its expiration. It is also possible1672
that a system using a 2-digit year in an expiration date might not allow the deletion of an1673
expired archive after Year 2000 rollover. For example, an archive with a 6-digit retention1674
date of 99-12-01 might be considered current when the system date is 2000-01-01 if the1675
comparison is made base on a 2-digit year.1676

1677
I Test objective1678
Verify that a system allows manual deletion of an archive after the system time
passes its retention date but not before.

1679
II Test conditions1680
Conditions
1 A system with an archive function that allows a user to set the

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

42

archive retention period.
1681

III Procedure/results1682
Test procedure Expected test results
1 Set System date to 1998-06-06
2 Create archive A and B with 1-

year data retention
3 Create Archive C with 2-year data

retention
4 Set system date to 1998-12-01
5 Attempt to delete archive A and B Should get an error message

stating that archive should be
retained until 1999-06-06

6 Attempt to delete archive C Should get an error message
stating that archive should be
retained until 2000-06-06

7 Set system date to 1999-12-01
Attempt to delete archive A Archive A should be deleted

normally
Attempt to delete archive C Should get an error message

stating that archive should be
retained until 2000-06-06

Set system date to 2000-01-01
Attempt to delete archive B Archive B should be deleted

normally
Attempt to delete archive C Should get an error message

stating that archive should be
retained until 2000-06-06

Set system date to 2000-06-07
Attempt to delete archive C Archive C should be deleted

normally
 1683

6.3 Backup and restore1684

6.3.1 Definition1685
 To make a copy of a file, file system or other resource, that will be replaced in the event1686
of failure or loss of the original.1687

6.3.1.1 Full backup1688
 The creation of a backup of all files on a particular storage device or system.1689

6.3.1.2 Partial backup1690
 The creation of a backup of a subset of files selected by the user.1691

6.3.1.3 Incremental backup1692
 The creation of a partial back up consisting of those files which have been modified1693
since they were last backed up.1694

6.3.2 Rationale1695
 The scheduling function of a backup routine must continue to operate properly during the1696
transition to the Year 2000 and beyond. The triggers that start these automated functions1697

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

43

should be checked for proper operation. The conditions that select a file for restoration or1698
backup may be based on file dates. The ability of the routine to correctly interpret and1699
compare file dates to backup dates should be tested.1700

6.3.3 Related elements1701
 Event triggers1702
 Archiving1703
 Error handling1704

6.3.4 Test cases1705

6.3.4.1 Full backup/overwrites1706
 The backup system may restrict the user’s ability to overwrite backup files with data that1707
is older than the backup file data. This system could interpret Year 2000 files as older1708
than files created before 2000 and not allow the backup to continue.1709
 1710

 I Test objective1711
 Verify that backups made prior to the Year 2000 can be successfully overwritten
by backups made after the Year 2000.

 1712
 II Test conditions1713
 # Conditions
 1 Set the system clock to 1999-06-06.
 2 Test data exists with dates ranging from the beginning of the test

period to 1999-06-06. This test data may constitute a set of files within
a directory, an entire drive, a database or other data storage structure.

 1714
 III Procedure/ results1715
 # Test procedure Expected test results
 1 Create a full backup of test data. A backup is created with the date

1999-06-06.
 2 Change the system date to 2000-

03-01 and modify the test data.

 3 Overwrite original full backup and
delete test data on source
system.

 A backup is created with the date
2000-03-01and all test data on the
source system is removed.

 4 Restore backup from step 3 and
check test data for the
modification.

 Content is the same as the original
test data with the modifications
made in step 2.

 1716

6.3.4.2 Selection of files1717
 Logical operators used for the selection of files may need to compare dates to determine1718
what files to include in the backup. Improper implementation could cause a large amount1719
of unwanted information to be included, while the intended data is left out. The basic1720
issues are:1721
 1722

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

44

• When attempting to backup data created after 2000-01-01 or a later date, the system1723
includes some data that is dated in the 1900’s.1724

 1725
 2000-01-01 < 1998-02-15 = False ⇒ File is excluded 11726
 1727
 00-01-01 < 98-02-15 = True ⇒ File is included1728

 1729
• When attempting to backup data created prior to 2000-01-01 or a later date, the1730

system does not include some data that is dated in the 1900’s.1731
 1732
 2000-01-01 > 1998-02-15 = True ⇒ File is included1733
 1734
 00-01-01 > 98-02-15 = False ⇒ File is excluded1735

 1736
• When attempting to backup data created after 1999-12-31 or an earlier date, the1737

system does not include data that is dated in the 2000’s.1738
 1739
 1999-12-31 < 2000-01-01 = True ⇒ File is included1740
 1741
 99-12-31 < 00-01-01 = False ⇒ File is excluded1742

1743
• When attempting to backup data created prior to 1999-12-31 or an earlier date, the1744

system includes some data in the 2000’s.1745
 1746
 1999-12-31 > 2000-01-01 = False ⇒ File is excluded1747
 1748
 99-12-31 > 00-01-01 = True ⇒ File is included1749

1750
 The basic tests should include cases to test each of these issues. The example given1751
tests only the greater-than-or-equal-to operator. Similar tests should be developed to test1752
all other inequalities used in this type of comparison.1753
 1754

 I Test objective1755
 Verify that the backup procedure will correctly select and backup files created
after a specified date.

 1756
 II Test conditions1757
 # Conditions
 1 Create files with the following creation/modification dates
 2 1998-01-01, 1999-12-31, 2000-01-01, 2001-12-31, 2004-12-31

 1758
 III Procedure/ results1759
 # Test procedure Expected test results
 1 Create a backup of files created

on or after 1999-06-06 and check
its contents.

 Backup 1999-06-06 should contain
files
 1999-12-31

1 The symbol ‘⇒ ’ is used as a logical operator for exclusive implication. It indicates that
if and only if the left side of the expression is true the right side must also be true for the
equation to evaluate as true. In each pair of equations on this page the first equation
represents the correct evaluation of the equation using a 4-digit year. The second
equation in each pair shows how a system might evaluate the left side of the implication
differently when processing dates with 2-digit years. The right side of the implication
shows the resulting change in functionality for the system.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

45

 2000-01-01
 2001-12-31
 2004-12-31

 2 Create a backup of files created
on or before 2001-06-06 and
check its contents.

 Backup 2001-06-06 should contain
files
 1998-01-01
 1999-12-31
 2000-01-01

 1760

6.3.4.3 Automatic1761
 The next scheduled backup or last backup date may be stored by the system. It is then1762
compared to the current date at regular intervals to determine when the next backup1763
should occur. Errors in the system’s interpretation or comparison of either of these dates1764
may cause the backup process to fail. The sample test case is for weekly backups. Since1765
different logic is often used to interpret intervals such as months, quarters or years, each1766
interval used should be tested separately.1767
 1768

 I Test objective1769
 Verify that automatic data file backups will occur on schedule across Year 2000
rollover.

 1770
 II Test conditions1771
 # Conditions
 1 Set backup parameters to Full Backup.
 2 Set backup frequency to weekly. Set backup date/time to Friday -

00:05:00
 3 Set of test data files.

 1772
 III Procedure/ results1773
 # Test procedure Expected test results
 1 Set the system date to 2 min.

before backup is scheduled to
occur, i.e., 1999-12-31T00:03:00.
Wait for backup to complete.

 Backup with date 1999-12-31 is
created.

 2 Create a new test data file on
source system.

 The file has been created.

 3 Set the system date/time to 2
min. before next backup is
scheduled to occur, i.e., 2000-01-
07T00:03:00.

Wait for backup to complete.

 Backup with date 2000-01-07 is
created. Verify that file created in
step 2 is contained in the backup.

 1774

6.4 Calculations1775

6.4.1 Definition1776
 The performance of arithmetic functions on date/time information.1777

6.4.2 Rationale1778
 Systems or system elements may perform calculations using date-data. During the Year1779
2000 rollover, there is a risk that date calculations may produce incorrect results in a1780

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

46

variety of ways. For example, it is often necessary to calculate the interval between two1781
dates. Calculation of intervals with 2-digit dates can yield invalid results:1782

 1783
 2001 - 1997 = 41784
 01 - 97 = -961785

 1786
 Some systems or system elements may only accommodate two digits for year-data input1787
or may only perform calculations using two digits of a four-digit year. Errors may occur1788
in the following types of calculations:1789
 1790
• Calculation of task duration1791
• Calculation of Interest payments1792
• Payroll and holiday calculations1793
• Leap year calculations1794

6.4.3 Related elements1795

Archival and retrieval1796

6.4.4 Test cases1797

6.4.4.1 Calculation of task duration1798
This example refers to a project planning application in which a task is a series of actions1799
that require a nontrivial amount of time defined by a start date, an end date and a1800
duration. These values are then used in creating schedules, estimating costs and1801
assigning personnel. When given the start date and either the end date or the duration1802
the application must be able to calculate the unknown variable.1803

6.4.4.1.1 Across Year 2000 rollover1804
I Test objective1805
Verify that the duration of a new task across the Year 2000 rollover is correctly
calculated.

 1806
II Test conditions1807
Conditions
1 Change the system date to 1999-12-31
2 Set the system for a 7-day workweek.

1808
III Procedure/results1809
Test procedure Expected test results
1 Create a task in scheduling

application/software with a start
date of 1999-12-31 and an end
date of 2000-01-04. Check
reported duration of task

Task should show a duration of 5
days

2 Create a task with a start date of
1999-12-31 and duration of 6
days. Check task end date.

Task has an end date of 2000-01-
05

3 Create a task with an end date of
2000-01-05 and duration of 6
days. Check task start date

Task start date should be 1999-
12-31

6.4.4.1.2 Calculation of Interest1810

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

47

The following test cases assume annually compounded interest over a one year period.1811
This is the least complex case. It is used here for clarity. Other cases may be necessary1812
for interest compounded quarterly, monthly, daily or for other cycles used by a particular1813
system.1814

6.4.4.1.2.1 loans1815
I Test objective1816
Verify that interest calculations are accurately performed over the Year 2000
rollover.

 1817
II Test conditions1818
Conditions
1 A computer system with interest calculation software.
2 Date of system is set to 1999-06-01

1819
III Procedure/results1820
Test procedure Expected test results
1 Generate a fictitious $10,000

Loan for a one year duration. Set
interest rate for 10%
compounded annually

2 Advance system date to 2000-06-
01

3 Check interest due Interest payment should be
$1000.00

6.4.4.1.2.2 Savings account.1821
I Test objective1822
Verify that interest calculations are accurately performed over the Year 2000

 1823
II Test conditions1824
Conditions
1 A computer system with interest calculation software.
2 Date of system is set to 1999-06-01

1825
III Procedure/results1826
Test procedure Expected test results
1 Open a fictitious savings account

with $10,000 in it. Set interest
rate for 10% compounded
annually.

2 Advance system time to 2000-06-
01.

3 Check accrued interest. Interest accrued should be
$1000.00

1827
1828

6.4.4.1.3 Across leap year in 20001829
 Some date calculation functions indicate a leap year and thus insert an additional day in1830
February, February 29th.1831

 1832

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

48

This test method attempts to verify Leap year calculations as accurate. February 29,1833
2000 is a valid date by virtue of the fact that the Year 2000 is a leap year. This is1834
especially important since the Year 2000 may not be recognized as a leap year by some1835
incomplete implementations of leap-year algorithms. It should be noted that 1900 and1836
2100 are NOT leap years. If an application requires those dates, then this test method1837
may be modified to suit.1838

1839
I Test objective:1840
Verify a system or system element’s ability to include a leap day in the Year
2000 and not in 2001. Note that the test focuses on a scheduling application;
the actual implementation of the test may be modified to fit any number of
applications.

 1841
II Test conditions:1842
Conditions
1 Change the system date on the business server and on the remote

client to 2000-02-28.
2 Set the system for a 7-day workweek.

1843
III Procedure/results1844
Test procedure Expected test results
1 Create a task with a start date of

2000-02-28 and an end date of
2000-03-03. Check the task’s
duration.

Task should show duration of 5
days.

2 Create another task with a start
date of 2000-02-28 and duration
of 5 days. Check the task’s end
date.

Task has an end date of 2000-03-
03.

3 Create another task with an end
date of 2000-03-03 and duration
of 5 days. Check the task’s start
date.

Task has a start date of 2000-02-
28.

4 Create a task with a start date
2100-02-28 and end date 2100-
03-03. Check the task’s duration.

Task should show duration of 4
days.

5 Create a task with a start date of
2100-02-28 and duration of 5
days. Check the task’s end date.

Task has an end date of 2100-03-
04.

6 Create a task with an end date of
2100-03-03 and duration of 5
days. Check the task’s start date.

Task has a start date of 2100-02-
27.

1845
1846

6.4.4.2 Holidays within a Leap Year1847
If a leap year is not appropriately recognized, secondary failures may occur, such as1848
erroneous recognition of holidays. Certain systems or system elements may need to1849
identify holidays for various purposes (e.g., payroll calculations). Holidays may have a1850
fixed value, such as the US Independence Day holiday, July 4. Other holidays may be1851
derived such as the US holiday Thanksgiving Day, which occurs on the fourth Thursday1852
of November. These tests attempt to verify that holidays occurring in a leap year are1853
appropriately recognized.1854

1855

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

49

I Test objective1856
Verify that an application calculates correct pay for hours entered on holidays in
a leap year.

 1857
II Test conditions1858
Conditions
1 Base pay is $10.00 per hour
2 Work during holidays is considered double time.
3 Thanksgiving day and Independence day (US), 2000-11-23 and 2000-

07-04, are considered holidays. 2000-07-03 and 2000-11-22 are NOT
holidays and are compensated at straight time.

 1859
III Procedure/results1860
Test procedure Expected test results
1 Create a pay period for an

employee starting on 2000-07-02
through 2000-07-08. Enter two
hours worked on the 3rd and no
other time worked in that pay
period.

Pay should be $20.00

2 Create a pay period for an
employee starting on 2000-07-02
through 2000-07-08. Enter two
hours worked on the 4th and no
other time worked in that pay
period.

Pay should be $40.00

3 Create a pay period for an
employee starting on 2000-11-19
through 2000-11-25. Enter two
hours worked on the 22nd and no
other time worked in that pay
period.

Pay should be $20.00

4 Create a pay period for an
employee starting on 2000-11-19
through 2000-11-25. Enter two
hours worked on the 23rd

(Thanksgiving day) and no other
time worked in that pay period.

Pay should be $40.00

1861
1862

6.5 Date determination1863

6.5.1 Definition1864
Functions that return date information or change the value of date/time sources.1865

6.5.2 Rationale1866
These system elements are the source, either directly or indirectly, of all date1867
information in a system that has not been input by a user. At the lowest level they must1868
directly interpret hardware counters converting a simple binary string into character data1869
in a variety of formats. As the Year 2000 approaches, limitations that were too far in the1870
future to concern the original programmers may become important issues. An example1871
might be a date setting function that accepts only 6 characters of input making it1872
impossible to set the system to a date after 1999-12-31. More complex functions use the1873

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

50

outputs of lower-level functions to calculate days of the week, the occurrence of holidays1874
or if the current year is a leap year. Some date sources may cease to function during1875
Year 2000 rollover or they may start returning dates in the early 1900’s.1876

6.5.3 Related elements1877
(API) Application Program Interface1878

6.5.4 Test cases1879

6.5.4.1 Weekend recognition for overtime/day of the week1880
This test case uses a difference in pay rates between weekdays and weekends as an1881
indicator that the system correctly identifies weekend versus non-weekend dates.1882
The week 2000-06-04 – 2000-06-10 was chosen because it has no holidays to confuse1883
the issue. The hours entered for all days should be small enough that overtime rules for1884
number of hours per day and total hours per day do not have an affect.1885

1886
I Test objective1887
Verify that application will assign overtime to the payroll reports for hours of
work done on weekends after the Year 2000.

 1888
II Test conditions1889
Conditions
1 System date set to 2000-06-12
2 Payroll program running
3 A time period for the week 2000-06-04 – 2000-06-10
4 At least one task to assign work to.
5 At least one full time resource with standard pay rate $10.00

(weekends paid as 1.5 time’s hourly wage).
1890

III Procedure/results1891
Test procedure Expected test results
1 Enter the following hours worked

for the resource on the indicated
days. Check the payroll report.
Sunday - 4 hours
Monday – 8 hours
Tuesday – 8 hours
Wednesday - 8 hours
Thursday – 8 hours
Friday - 0 hours
Saturday - 1 hour

Total time for the resource is 37
hours. 32 hours standard time and
5 hours overtime. Total weeks
wage $395.00.
395= (32*10) + (5*15)

1892

6.5.4.2 Automated display functions of calendars1893
By setting the system date prior to January 2000 it is insured that the logic needed to1894
define dates as holidays can function across Year 2000 rollover. Results are given for1895
U.S. holidays and events and will be different in other countries. The years 2000 and1896
2001 are used as examples of a Leap Year versus a Non-Leap Year.1897

1898
I Test objective1899
Verify that the correct days are annotated as holidays on the calendar display in
the Year 2000 and beyond.

 1900

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

51

II Test conditions1901
Conditions
1 Set system time to a date prior to 2000-01-01
2 Set calendar to display all US holidays

1902
III Procedure/results1903
Test procedure Expected test results
1 Change calendar year to 2000.

Check that holidays are displayed
on the dates specified in the
table.

The dates in the 2000 column of
the results table should be listed
as holidays

2 Repeat step one for the year
2001. (Testing may continue
beyond 2001 if holiday dates are
from a reliable source.)

The dates in the 2001 column of
the results table should be listed
as holidays

1904
IV Results table1905
Holiday or Event 2000 2001
New Years Day 01-01 01-01
Martin Luther King Day 01-17 01-15
Lincoln’s Birthday 02-12 02-12
Valentine’s Day 02-14 02-14
Presidents Day 02-21 02-19
St. Patrick’s day 03-17 03-17
Easter 04-24 04-15
Mother's Day 05-14 05-13
Memorial Day 05-29 05-28
Flag Day 06-14 06-14
Father’s Day 06-18 06-17
Independence Day 07-04 07-04
Labor Day 09-04 09-03
Columbus Day 10-09 10-08
Halloween 10-31 10-31
Election Day 11-07 11-06
Veterans Day 11-11 11-11
Thanksgiving 11-23 11-22
Christmas 12-25 12-25

1906

6.5.4.3 Holidays time periods/ automated functions1907
The effects of days of the week, holidays and leap years may not be correctly interpreted1908
when starting automated functions after the Year 2000. The following test case is an1909
example that requires correct interpretation of a holiday. It involves a bank security1910
system that will not allow access to the vault on weekends or bank holidays. The holiday1911
used occurs prior to February 29th to isolate the test from the effects of an incorrect1912
interpretation of leap year. Similar test cases include tests for the proper interpretation of1913
normal weekends, fixed-date holidays, and variable-date holidays both before and after1914
February 29th in Leap Years and Non-Leap Years.1915

1916
I Test objective1917
Verify that vault security systems require special access to open on Martin
Luther King day in the Year 2000

 1918

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

52

II Test conditions1919
Simulation of vault door accesses security.
1 Set weekend access to start Fridays at 18:00:00 and end Monday at

07:00:00.
2 Set all holidays to no access.

1920
III Procedure/results1921
Test procedure Expected test results
1 Set the simulation time to 2000-

01-14 - 17:55:00. to open vault
using normal week day
procedures

Access should be granted
normally.

2 Close vault and wait 10 minutes.
Attempt to open vault.

Access should be denied.

3 Advance system time to 2000-01-
17 - 07:05:00 Attempt to open
vault.

Access should be denied.

4 Advance system time to 2000-01-
18 - 06:55:00 Attempt to open
vault

Access should be denied.

5 Wait 10 minutes. Attempt to open
vault.

Access should be granted
normally.

6.5.4.4 Dates that are calculated by mathematical operation1922
Date calculations are often either additions or subtractions of a time interval. In this case1923
the interval is calculated by a formula that requires day of the week information. This1924
scheduling function must determine the number of hours that each assigned worker has1925
available on the start day of the task and subtract that value from the total hours1926
required to complete the task. If the task is still not complete it repeats the process for1927
the following day. It then adds the count of the number of days required to the start date.1928
Failures can be caused by retrieval of the wrong availability or a mistake in adding the1929
interval to the start date.1930

1931
I Test objective1932
Verify that task completion dates may be marked using the estimated worker-
hours, number of assigned personnel and the start date.

 1933
II Test conditions1934
Conditions
1 Open a test project with a starting date of 1999-12-31 and at least two

workers that have no currently assigned tasks.
2 Set both workers schedule to 8 hours per day weekends and holidays

off.
3 2000-01-01 and 2000-01-02 fall on a weekend. For purposes of this

test case 2000-01-03 is treated as holiday in lieu of New Years day.
1935

III Procedure/results1936
Test procedure Expected test results
1 Create a task with an estimated

duration of 30 hours. Do not
include a completion date.

Task should be indicated as
unassigned.

2 Open a project schedule. Assign
the task to both employees on the
first available date. Assign the

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

53

task to employee 1 alone on
subsequent days until it is
completed.

3 Check task completion date. Task completion date should be
2000-01-06

1937
1938

6.6 Hardware1939

6.6.1 Definition1940
For purposes of this test method, hardware, as distinguished from firmware or software,1941
can be considered that physical component within a system or system element that is1942
responsible for tracking and maintaining time and date. An example of hardware is the1943
integrated circuit within a PC that performs the function of Real Time Clock.1944

6.6.2 Rationale1945
Many systems or system elements use a hardware sub-element with a separate power1946
source to keep track of time and date whether or not power is applied to the overall1947
system. In some implementations of hardware clocks, only two digits have been used to1948
report and maintain year data. Unfortunately, a two-digit clock implementation may1949
cause problems as we consider the transition into the next century. If only two digits are1950
returned by the hardware, it may be difficult or impossible for the system element that1951
requested the information to accurately recognize the correct year and century. There1952
are various means to correct for this via firmware or software interpretation, and/or1953
changes to hardware, which this test method does not intend to cover; this test method1954
will attempt to gauge the effectiveness of the remediation, however. 1955

6.6.3 Related elements1956
Distributed networks1957

6.6.4 Test cases1958

6.6.4.1 Hardware system clock transition through crossover.1959
I Test objective1960
Verify that the hardware (PC, LAN Server, or Client Workstation) system clock
returns the correct date under various power and boot conditions after the Year
2000 rollover.

 1961
II Test conditions1962
Conditions
1 Enable 8-digit input of date-data. System date-data representation

may be displayed in tester's choice, however for consistency sake, ISO
8601 format will be used in this test.

1963
 1964

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

54

III Procedure/results1965
Test procedure Expected test results
1 Test the system clock automatic

update function when the system
power is on
a. Set the system clock to 1999-
12-31, 23:57:00
b. Keep system power on
c. Wait 5 minutes.
d. Check the date
e. If it is set correctly, power off,
and re-check the date

Date should be 2000-01-01-for
both checks.

2 Test the system clock automatic
update function when the power
is off
Set the system clock to 1999-12-
31, 23:57:00
Power the system off
Wait 5 minutes.
Power the system on
Check the date

Date should be 2000-01-01.

3 Test the date/time update after
suspension over the crossover of
a time-sensitive program that
displays the date.
Set the system clock to 1999-12-
31, 23:57:00
Suspend a date/time-display
program without a 'wake-up' timer
Wait 5 minutes

a. Resume the date/time-
display program and check
the date

Date should be 2000-01-01.

4 Verify that the system clock,
following a powered up
crossover, will show the correct
date after a warm reboot.
Set the system clock to 1999-12-
31, 23:57:00
Keep system power on
Wait 5 minutes.
Check the date
Reset (warm reboot) the system
and re-check the date

Date should be 2000-01-01 for
both checks

1966

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

55

6.7 Computer numerical controls1967

6.7.1 Definition1968
Computer Numerical Controls (CNC) are system elements that process a program that1969
defines the movements or operation of a machine.1970

6.7.2 Rationale1971
Most modern CNCs include a 3.5” floppy drive with associated PC-compatible file1972
system. Fault logging functions which time stamp the occurrence of machine faults are1973
standard features. These time stamps may become corrupted during Year 2000 rollover.1974
Many CNCs are used in an environment where different programs are downloaded for1975
each function performed by the machine. A failure in the file system may cause a file to1976
become inaccessible. In some cases these programs may contain date/time information1977
that the CNC must interpret in order to perform real time functions.1978

6.7.3 Related elements1979
Event-triggers, logs-date stamps, file access systems1980

6.7.4 Test cases1981

6.7.4.1 Program modification1982
1983

I Test objective1984
Verify that modifications to a CNC program are effective after Year 2000
rollover

 1985
II Test conditions1986
Conditions
1 Prepare a CNC file with a creation/modification date of 1999-12-31
2 Set CNC system date to 2000-01-01

1987
1988

III Procedure/results1989
Test procedure Expected test results
1 Open, modify and save the CNC

program file.
The CNC program file has a
creation/modification date of 2000-
01-01

2 Reinitialize the CNC device and
check the system date

The CNC system date should
remain at 2000-01-01

3 Load and run the modified CNC
program.

The CNC program should operate
correctly as modified.

6.7.4.2 Logging1990
1991

I Test objective1992
Verify that a CNC device can create a log file of events both before and after
Year 2000 rollover

 1993

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

56

II Test conditions1994
Conditions
1 A CNC device with log function.
2 Set system date to 1999-12-31

1995
1996

III Procedure/results1997
Test procedure Expected test results
1 Enable log function. Generate an

event which should cause a log
file entry

2 Wait until after Year 2000 rollover
and generate a second event that
should cause a log file entry.

3 Disable the log function and
examine the log file created.

The log file should contain entries
for two events dated 1999-12-31
and 2000-01-01 in that order.

1998

6.8 Communication protocols1999

6.8.1 Definition2000
A set of formal rules describing how to transmit data, especially across a network. Low-2001
level protocols define the electrical and physical standards to be observed, bit and byte2002
ordering, the transmission, error detection and correction of the bit stream. High-level2003
protocols deal with the data formatting, including the syntax of messages, the terminal to2004
computer dialogue, character sets, sequencing of messages etc.2005

6.8.2 Rationale2006
Each different communications protocol may have features that depend on date and2007
time. Possible date-dependent areas might include message sequencing over high risk2008
test dates, data routing costs calculations based on date/time and message header date2009
formats. The specific test issues regarding communications protocols must be derived2010
from an analysis of the particular protocol being used. For example, the Simple Network2011
Management Protocol defines two commands (HOLDuntil and MSTAtus) that require2012
date/time date stored using the two-digit year format YYMMDDHHMMSS+GMT.2013
HOLDuntil allows for delayed delivery of a message until after the time specified.2014
Messages with a HOLDuntil after December 31, 1999 may never be delivered, or may2015
be delivered immediately.2016

6.8.3 Related elements - none2017

6.8.4 Test cases2018

6.8.4.1 Time stamps2019
When email is sent a time stamp is included that may be taken from the system date of2020
the system originating the message. The purpose of this test case is to determine if the2021
time stamp associated with a mail system can be interpreted by the receiving system2022
with the correct century indication. In some cases setting the system date format to six2023
digit may cause the time stamp to be either incomplete or have the digits ‘19’ added to2024
the 2-digit year value.2025

I Test objective2026
Verify that correct time stamps will accompany email sent after the Year 2000

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

57

rollover. Verify that receiving system correctly recognizes century given two-
digit year input.

 2027
II Test conditions2028
Conditions
1 Email system with at least two registered addresses.
2 Set system time to 2000-01-01
3 Set origination workstation date mode to YY-MM-DD
4 Set receive workstation date mode to YYYY-MM-DD

2029
2030

III Procedure/results2031
Test procedure Expected test results
1 On the origination workstation

compose and send a message to
the receive workstation. Check
the time stamp on the message in
the sent-mail folder.

The message should be in the
sent-mail folder and its date
should be 00-01-01.

2 On the receive computer, check
the date stamp on the message in
the in-box.

The message should be in the
incoming-mail folder and its date
should be 2000-01-01.

3 Open the message and check the
date received.

The date should be 2000-01-01.

2032

6.9 Compilers2033
There are two distinct aspects of Year 2000 testing with regard to compilers. The first is2034
ensuring that the operation of the compiler itself correctly spans the Year 2000 boundary.2035
The second ensures that the compiler-generated output, i.e., the input source code2036
translated to the target object code, operates correctly across the Year 2000 boundary.2037

2038
In the first case virtually any source program that can be compiled will serve as a test2039
case. It may be necessary to vary compiler options and/or control statements to2040
demonstrate that date information inserted into compiled programs or displayed on2041
listings or screens is correct. It may be necessary to manipulate the system date for2042
these test cases to be demonstrative.2043

2044
In the second case special source code must be written to demonstrate that the behavior2045
of the compiler output is correct. It may also be necessary to invoke a variety of pre-2046
processors since those may invoke different library functions for date definition and2047
manipulation. Compilers may have both called library functions for date-related2048
processing and built-in functions where the date-related processing is inserted in-line. All2049
such cases and variations must be examined for correct operation across the Year 20002050
boundary.2051

2052
In both cases the context of the compilation should be considered. There may be date-2053
related considerations which vary depending on whether or not the compiler is part of a2054
development or language environment as opposed to a standalone process. There may2055
also be different considerations if the compiler operates on a system architecture2056
different than the compiled code’s target architecture. Database and data2057
communications programs may also require special consideration, in particular if any2058
part of the data or control is distributed where different time zones, date sources or2059
compiler versions may affect the outcome of date-related processing.2060

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

58

6.9.1 Definition2061
2062

A compiler is a computer program that translates programs expressed in a high-level2063
language into their machine language equivalents.2064

2065

6.9.2 Rationale2066
2067

Compilers are an integral part of many software systems. They both translate software2068
program-related dates and process dates to support the functionality of the compiler2069
itself. In the program translation process offsets from a base date and other data-2070
manipulation techniques can be used to aid in conversion. A compiler is similar to any2071
software program that processes a full range of dates with the potential for unexpected2072
failures in date handling.2073

2074
Compilers may contain date-retrieval facilities that may be invoked by compiled2075
programs. The function of these should be tested. Extra caution may be warranted for2076
compiler pre-processors where the date retrieval mechanism may differ from and2077
override that of the compiler.2078

6.9.3 Related elements2079
2080

Date Calculations, parsing2081

6.9.4 Test cases2082
2083

6.9.4.1 Compiler program date determination2084
2085

Compilers generate reports that contain compiler date information. These reports should2086
correctly process and report date information.2087

2088
I Test objective2089
Verify that a compiler processes date information and generates date
information reports and screen displays regarding its own operation correctly.

2090
II Test conditions2091
Conditions
1 A compiler is prepared to accept a high level language file for

conversion to machine language. Date-simulation software has been
added to the computer system to return compiler calls for system dates
beyond the Year 2000.

2 A compiler is prepared to accept a high-level language file for
conversion to machine language. The compiler is operating within a
computer system whose system clock has been advanced to beyond
the Year 2000.

2092
2093

III Procedure/results2094
Test procedure Expected test results
1 Record the post-2000 dates that

will be returned to the compiler by
the date-simulation software

All dates in the compiler reports
should be correctly formatted and
conform to the post-2000 dates

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

59

and/or system clock. Configure
the compiler to output date
information as appropriate.
Process the file conversion and
generate reports to display
screen, file, printer and/or other
output devices. Inspect the dates
in the compiler reports.

returned by the simulation
software or future-system
environment.

2095
2096

6.9.4.2 Compiler date formatting2097
2098

The compiler must be able to correctly process all of the date formats that are used by2099
the programs it compiles beyond the beginning of Year 2000 and throughout the2100
compilers valid date interval.2101

2102
I Test objective2103
Verify that the compiler is able to read, format, and output date-data in date
formats used by the programs it compiles in a Year 2000 environment.

2104
II Test conditions2105
Conditions
1 A compiler is prepared to accept a high order language file for

conversion to machine language. The high-level language file contains
a test program, which reads date-input data, applies specified date
formats to the input data, and outputs the date-data. The following are
examples of input data and date formats, which may be used by the
test program and the output that should result. The form of the input
data and the date formats supported may vary among compilers.

2106
2107

Given date Date format Date output

1999-12-31 YYYY/MM/DD 1999/12/31
1999-12-31 YYYY-MM-DD 1999-12-31
1999-12-31 YYYY.MM.DD 1999.12.31
1999-12-31 MM/DD/YYYY 12/31/1999
1999-12-31 MM-DD-YYYY 12-31-1999
1999-12-31 MM.DD.YYYY 12.31.1999
1999-12-31 DDMMYYYY 31121999
1999-12-31 MMM DD,YYYY DEC 31, 1999
1999-12-31 DD MMM YYYY 31 DEC 1999
1999-12-31 YYYYMMDD 19991231
2000-01-01 YYYYMMDD 20000101
1999-12-31 MMMM DD, YYYY December 31, 1999
2000-01-01 DDMMMYYYY 01JAN2000
2000-12-31 DDMM 3112
2000-12-31 YYDDD 00366
2000-12-31 MMYY 1200

MMM - Three character abbreviation of the month.2108
MMMM – Month value displayed as complete word.2109

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

60

2110
III Procedure/results2111
Test procedure Expected test results
1 Prepare a test program with

appropriate date-input data and
date formats. Compile the
program. Execute the program
and inspect the output.

For each input date and date
format, the date output should be
in the format listed in the Date
Output column above.

2112

6.9.4.3 High-risk date translation processing2113
2114

The compiler should be able to accurately process all high-risk dates that may be2115
included as data within a program.2116

2117
I Test objective2118
Verify that the compiler correctly processes all date-related information included
in program data.

2119
II Test conditions2120
Conditions
1 A compiler is prepared to accept a high level language file for

conversion to machine language. The file to be converted contains the
high-risk date-data shown below and a function to add a number of
days to each date and print the resulting date. The dates to be in the
data include the following:

a. 1999-01-01
b. 1999-09-09
c. 1999-12-31
d. 2000-01-01
e. 2000-02-28
f. 2000-02-29
g. 2000-12-31
h. 2001-01-01
i. 2001-02-29 (note: This date should return an error.)
j. 2000-10-10

2121
III Procedure/results2122
Test procedure Expected test results
1 Compile and execute the

program. Inspect the output.
Compare the dates that are output
with the expected outputs. For
example, if 3 days were added to
each date, the outputs would be
correctly formatted and
incremented by 3. If the pre-
compiled date was 1999-12-31,
the date displayed after the
program was compiled and
executed would be 2000-01-03.

2123

6.9.4.4 Special-condition date-processing2124
2125

The compiler should accurately process all special-condition date-data in a program.2126

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

61

2127
I Test objective2128
Verify that the compiler correctly processes special-condition date-data.

 2129
II Test conditions2130
Conditions
1 A compiler is prepared to accept a high-level language file for

conversion to machine language. The file to be converted contains a
test program which reads pairs of input date-data including special-
condition dates, calls a function to calculate the difference between the
date pairs and formats, and outputs the pairs of input dates and
calculated differences. The following are examples of pairs of input
dates involving special-condition dates:
First Date Second Date Calculated Difference
1998-12-31 2000-01-02 367
1998-12-31 1999-01-04 4
1999-12-28 2000-01-02 5
1999-12-31 2000-01-10 10
1999-12-31 2000-01-11 11
1999-12-31 2001-01-02 368
2000-02-28 2000-03-02 3
2000-02-29 2000-03-02 2
2000-12-31 2001-01-13 13
2001-01-01 2002-01-01 365
2001-02-29 2001-03-01 (This date should return an error.)
2000-10-09 2000-10-10 1
2000-10-09 2000-10-11 2

2131
III Procedure/results2132
Test procedure Expected test results
1 Prepare a test program with

appropriate date-input data and
date formats. Compile and
execute the program. Inspect the
output.

The input date-data should be
output formatted as specified and
the calculated differences should
be as listed above.

2133

6.10 Event-triggers2134

6.10.1 Definition2135
A process which causes the automatic invocation of a procedure at a specified time.2136

6.10.2 Rationale2137
Event-triggers generally start the execution of a procedure when the current time is2138
equal to or greater than the scheduled event time. As we approach Year 2000, events2139
will need to be scheduled in 1999 to occur in the Year 2000. If the event-trigger process2140
compares dates with only two digit year information, it might interpret an event flag2141
intended for the Year 2000 as if it were set for 1900. This might cause an error, or the2142
event might occur immediately. Such event flags are often used in systems with built-in2143
maintenance-scheduling elements. A date is stored by these systems at the time that2144
maintenance is performed. This date is compared to the current system date at regular2145
intervals until the next maintenance is due. When the event-trigger goes off, it may only2146
turn on an indicator, but in some systems it might trigger a shut down or intentionally2147

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

62

fuse elements of the system to prevent operation until maintenance is completed. Event-2148
triggers may initiate periodic maintenance of embedded systems.2149

6.10.3 Related elements2150
 Alarm systems2151
 Project management systems2152
Invoice aging2153

6.10.4 Test cases2154

6.10.4.1 Starting applications2155
Applications scheduled before the Year 2000 to start after a specified elapsed time2156
should open on schedule even if the event starts after the Year 2000 rollover.2157

2158
Applications scheduled to start on a specified date after 1999 should open as scheduled.2159

2160
I Test objective2161
Verify that an event-trigger process will continue to open applications on a
specified schedule beyond the beginning of the Year 2000.

 2162
II Test conditions2163
Conditions
1 Date/time mode set to YYYY-MM-DDThh:mm:ss with a 24-hour clock.
2 Event-trigger process active.
3 Test application to be triggered has a screen display and requires user

to close it upon completion.
2164

III Procedure/results2165
Test procedure Expected test results
1 Close test application. Set event-

trigger process to open test
application every 2 minutes.
Wait for test application to open
and immediately close it several
times to confirm correct operation
at current time.

Event-trigger processor should
reopen test application every two
minutes after it is closed.

2 Set system timer to 1999-12-
31T23:57:00. Set event-trigger
program to open test application
on 2000-01-01 at 00:03:00. Close
the test application.

3 Wait six minutes for test
application to open.

Test application should open on
2000-01-01 at approximately
00:03:00.

4 Close test application. Set system
timer to 1999-12-31T23:57:00.
Set event-trigger program to
open test application every 2
minutes.

5 Wait for test application to open
and immediately close it three
times.

Test application should open on
1999-12-31 at approximately
23:59:00, and on 2000-01-01 at
approximately 00:01:00 and
00:03:00.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

63

6 Repeat steps 2 - 5 putting event-
trigger process in background
mode after it is set.

Results should be as in steps 2 - 5,
unaffected by putting event-trigger
in background mode.

2166

6.10.4.2 Sending email2167
Email written before the Year 2000 rollover but scheduled for transmission afterwards2168
should be sent as scheduled.2169

2170
Some network systems cache their email and send messages periodically. This should2171
be considered when reviewing expected results.2172

2173
I Test objective2174
Ensure that email scheduled after the end of 1999 is sent on schedule.

 2175
II Test conditions2176
Conditions
1 Operating email system with at least two addresses

2177
2178

III Procedure/results2179
Test procedure Expected test results
1 Disconnect transmit system from

mail router and attempt to send a
message to the receive system.

A message window indicating the
message could not be sent should
appear.

2 Set system date and time to 1999-
12-31T23:55:00. Create a test
email message. Choose the
Transmit Later Option and set the
transmit time to 2000-01-
01T00:03:00. Reconnect the
system to the mail router. Wait ten
minutes. Check for mail at the
receive system.

The test message should be in the
new message folder.

2180

6.10.4.3 Invoice aging - automatic invoice generation2181
The life cycle of an invoice is a series of defined periods monitored by the system.2182
Invoices whose life cycle spans Year 2000 rollover will be required to compare dates2183
before and after 1999-12-31. Inaccurate comparisons could lead to invoices that never2184
become payable or are not sent for payment. Other systems may view recent invoices2185
as being 99 years past due.2186

2187
I Test objective2188
Verify that invoices created in Dec 1999 will produce billings at 30, 60, 90 and
120 days.

 2189
II Test conditions2190
Conditions
1 Billing package with at least one current long-term test account that

has no outstanding balance.
2191

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

64

III Procedure/results2192
Test procedure Expected test results
1 Set system date to 1999-12-15.

Create four invoices (A, B, C, and
D) to the test account and four (E,
F, G, H) for one-time sales. Print
daily outgoing invoices.

All invoices should be printed with
a billing date of 1999-12-15.

2 Set system date to 2000-01-14.
Print daily outgoing invoices.

All invoices should be printed with
a billing date of 2000-01-14
labeled outstanding for 30 days.

3 Set system date to 2000-02-13.
Enter “paid in full” for invoices A
and E. Print daily outgoing
invoices.

Invoices B, C, D, F, G, and H
should be printed with a billing
date of 2000-02-13 labeled
outstanding for 60 days.

4 Set system date to 2000-03-14.
Enter “paid in full” for invoices B
and F. Print daily outgoing
invoices.

Invoices C, D, G, H should be
printed with a billing date of 2000-
03-14 labeled outstanding for 90
days.
Invoices D and H should be
printed due upon receipt.

5 Set system date to 2000-04-13.
Enter “paid in full” for invoices C
and G. Print daily outgoing
invoices.

Invoices D and H should be
printed with a billing date of 2000-
04-13 labeled outstanding for 120
days.

2193

6.10.4.4 Interval timers2194
Many systems have processes that occur at regular intervals such as checking for new2195
messages every 15 minutes, checking for new data in a shared data source every 52196
seconds and polling sensors that tell a machine tool that a new part is available to be2197
processed every few milliseconds. In systems that contain a real time clock (RTC) these2198
and other events may be timed by setting an event-trigger to occur at the current system2199
time plus a specified interval. When the trigger is encountered, a new event-trigger is set2200
and the process is started. When the process completes, the system waits for the next2201
event-trigger and repeats the cycle. During Year 2000 rollover, the computation of the2202
trigger time may produce a non-existent time.2203

2204
99-12-31T11:59:30 + 5 min. = 100-01-01T00:04:002205

2206
In 5 minutes the RTC time of 00-01-01 00:04:00 may not be interpreted as equal to the2207
computed trigger time, so the timer might wait indefinitely.2208

2209
However, if the system computes a correct date but omits or ignores century digits, then2210
the computed date may be interpreted as before the current time and trigger a new cycle2211
immediately. This might put the timer into a loop condition, in which the timer would2212
restart the process as often as possible until the current time reaches 00-01-01 00:00:002213
or the system crashes. For example:2214

2215
Command System time Trigger time
Wait (until System Time ≥ Trigger Time) 99-12-31 23:55:30
Set trigger = System time + 5 min. 99-12-31 23:55:30 00-01-01 00:00:30
Start process (5 sec. Process completion time) 99-12-31 23:55:30 00-01-01 00:00:30

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

65

Wait (until System Time ≥ Trigger Time) 99-12-31 23:55:35 00-01-01 00:00:30
Set trigger = System time + 5 min. 99-12-31 23:55:35 00-01-01 00:00:35
Start process (5 sec. Process completion time) 99-12-31 23:55:35 00-01-01 00:00:35
Wait (until System Time ≥ Trigger Time) 99-12-31 23:55:40 00-01-01 00:00:35
Set trigger = System time + 5 min. 99-12-31 23:55:40 00-01-01 00:00:40
Start process (5 sec. Process completion time) 99-12-31 23:55:40 00-01-01 00:00:40
Wait (until System Time ≥ Trigger Time) 99-12-31 23:55:45 00-01-01 00:00:40
The above cycle may repeat until the system time reaches Year 2000 rollover. At that
point the 2 digit year values for system time and trigger time become equal and the
comparison should function normally.
Set trigger = System time + 5 min. 00-01-01 00:00:00 00-01-01 00:05:00
Start process (5 sec. Process completion time) 00-01-01 00:00:00 00-01-01 00:05:00
Wait (until System Time ≥ Trigger Time) 00-01-01 00:00:05 00-01-01 00:05:00
Set trigger = System time + 5 min. 00-01-01 00:05:00 00-01-01 00:10:00
Start process (5 sec. Process completion time) 00-01-01 00:05:00 00-01-01 00:10:00

2216
2217

I Test objective2218
Ensure that an interval timer will maintain its specified cyclic interval when the
interval crosses Year 2000 rollover.

 2219
II Test conditions2220
Conditions
1 Interval timer set to cycle every 5 min.
2 A means of monitoring the timers output
3 System time set to 99-12-31 23:50:00

2221
III Procedure/results2222
Test procedure Expected test results
1 Start interval timer at 23:51:00
2 Observe timer output Timer should trigger at 99-12-

31T23:56:00 and 2000-01-
01T00:04:00 (In some
implementations the timer may
also trigger immediately when it is
started)

2223

6.11 Error handling2224

6.11.1 Definition2225
The process of detecting and responding to any discrepancy between a computed,2226
observed, or measured value or condition and the true, specified, or theoretically correct2227
value or condition.2228

6.11.2 Rationale2229
Computer systems routinely process date information. Whether date information is2230
interactively input by the user or whether date-data is supplied via some other source,2231
(e.g., a data file), there often is some means to assess the legitimacy of the date-data. If2232
input date-data is not acceptable to the processing logic, then an error should be2233
reported. As systems or system elements are remediated to accept dates beyond the2234

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

66

Year 2000, the error detection logic and error reporting routines will also need to be2235
remediated. Such remediations should include meaningful error messages.2236

2237
The use of any dates which can be interpreted as more than one actual date should2238
produce an error or warning. This may provide a notification to the user that it is2239
necessary to correct the stored dates or provide more complete input dates.2240
 2241

6.11.3 Related elements2242
Archiving/Restoring2243

6.11.4 Test cases2244

6.11.4.1 New error messages2245

In this test case the use of dates outside the test period should produce an error2246
message. Other methods of handling the error may be more suitable to a specific2247
system. For example, the system might mark a date field as unknown or request user2248
intervention to clarify the date. This is acceptable provided that no data corruption2249
occurs. The terminalogy of the test assumes that the term Pivot Year is used in2250
accordance with IEEE Standard 2000.1-1998 sub-clause A.2.4. This limits the range of2251
acceptable dates to 1980-01-01 through 2079-12-31.2252

2253
I Test objective2254
Test for appropriate error reporting for input dates that are out of range. Verify
that 4-digit years outside the date window for 2-digit database fields will return
an error.

2255
II Test conditions2256
Conditions
1 An application using a database with at least one date field that has a

2-digit year format and a date window based on 1980 as the pivot year.
2 Set the data entry date format to YYYY-MM-DD

2257
III Procedure/results2258
Test procedure Expected test results
1 Create a new record with 1979-

12-31 in the date field.
This should cause an error stating
that the date 1979-12-31 is out of
range.

2 Create a new record with 1980-
01-01 in the date field.

The date 1980-01-01 should not
cause an error

3 Create a new record with 2079-
12-31 in the date field

The date 2079-12-31 should not
cause an error

4 Create a new record with 2080-
01-01 in the date field

This should cause an error stating
that the date 2080-01-01 is out of
range.

2259

6.11.4.2 Proper display of dates in error messages2260
Error messages that contain dates must display them in a format that reliably2261
differentiates the century digits.2262

2263
I Test objective2264

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

67

Verify that the error message produced when attempting to delete an archive
before its expiration date displays the date in an unambiguous manner.

2265
II Test conditions2266
Conditions
1 A system with an archive function that allows a user to set the archive

retention period.
2267

III Procedure/results2268
Test procedure Expected test results
1 Set System date to 1998-06-06
2 Create archive A with 1-year data

retention
3 Create Archive B with 2-year data

retention
4 Set system date to 1998-12-01
5 Attempt to delete archive A Should get an error message

stating that archive should be
retained until 1999-06-06

6 Attempt to delete archive B Should get an error message
stating that archive should be
retained until 2000-06-06

2269

6.12 File access system2270

6.12.1 Definition2271
The hardware, software and firmware responsible for the long term storage and retrieval2272
of data and program information.2273

6.12.2 Rationale2274
Many systems associate a date with each file. Applications may access these dates to2275
select or compare files. System logic may provide warnings when an attempt is made to2276
replace a file with one that has an older creation date. Other systems keep a specified2277
number of older versions of files as backups. If the process that triggers these features2278
does not properly disambiguate the date the system may fail.2279

6.12.3 Related elements2280
Archiving/restoring, Backup and restore2281

6.12.4 Test cases2282

6.12.4.1 Application installation2283
When reinstalling an application, date comparisons may be made to insure that2284
configuration files that have been changed by the user are not replaced. If the file2285
system provides incomplete date information, files modified after the transition from2286
1999 to 2000 may be returned to an initial configuration.2287

I Test objective2288
Verify that reinstallation of software after the transition from 1999 to 2000 will
not overwrite configuration information in files dated before the transition from
1999 to 2000.

 2289

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

68

II Test conditions2290
Conditions
1 System date set prior to Year 2000

2291
III Procedure/results2292
Test procedure Expected test results
1 Perform normal initial installation

of application under test. Note the
modification dates of
configuration files.

Modification dates should be the
current system date or earlier
dates.

2 Change the system date to a date
after the transition from 1999 to
2000.

3 Make any modifications
necessary to create a change in
each configuration file. Note the
new configuration file
Modification dates

Modification dates should be the
new system date after change
from step 2.

4 Reinstall the application.
Choosing any options offered to
retain existing configuration.

Configuration file modification
dates should be the same as in
step 3.

2293

6.12.4.2 Source code or document control2294
As a version-control system moves from 1999 into 2000, files created in 1999 or earlier2295
may need to be replaced with files having creation dates in 2000. If this comparison is2296
made using a 2-digit year, the version control system may disallow or inhibit the storage2297
of new files. Files with modification dates prior to Year 2000 might replace newer files2298
without warning.2299

2300
I Test objective2301
Verify that retrieval of a pre-2000 file into a directory containing an earlier
version of the same file produces a warning.

 2302
II Test conditions2303
Conditions
1 Set system date on client and server to 1999-12-01. Create a file on

client.
2 Set system date to 2000-01-01
3 Move file to a centralized server whose date is 2000-01-01

2304
III Procedure/results2305
Test procedure Expected test results
1 Create and save file on client.
2 Upload file to server.
3 Change client and server system

dates to 2000-01-01
4 Modify and save file on client

(using same file name).
5 Upload modified file to server to

same location as original
(unmodified) file.

6 Delete modified file from client.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

69

7 Download modified file from
Server back to client and open

File on client reflects modified
data and also new date.

2306

6.12.4.3 Data upload2307
When a system or system element sends data to another system or system element, the2308
creation dates of one or more files may need to be compared in order to insure that2309
more recent data will not be overwritten2310

2311
I Test objective2312
Verify that a warning message will be returned if an attempt is made to upload a
file created before Year 2000 and replace a file dated after Year 2000 rollover.

 2313
II Test conditions2314
Conditions
1 Set system date on client and server to 1999-12-01.

2315
III Procedure/results2316
Test procedure Expected test results
1 Create and save file on client.
2 Upload file to server.
3 Change client and server system

dates to 2000-01-01
4 Modify and save file on client

(using same file name).
5 Upload modified file to server to

same location as original
(unmodified) file.

6 Delete modified file from client.
7 Download the file from the server

back to client and open it.
File on client reflects modified
data and also new date.

6.12.4.4 File overwrite2317
Many systems enhance data safety by comparing file dates and providing warnings if a2318
system element attempts to overwrite an existing file with an earlier version of the same2319
file. These warnings may occur when not needed if the existing file was created before2320
and the replacement file is created after Year 2000 rollover.2321

2322
I Test objective2323
Verify that a file created after Year 2000 will replace a file dated before Year
2000 rollover.

 2324
II Test conditions2325
Conditions
1 Existing files dated before Year 2000 rollover
2 System date set after Year 2000 rollover.

2326
III Procedure/results2327
Test procedure Expected test results
1 Open the existing file and make

some changes to it.
2 Save the file to a different

location in the file system.
File is saved without error

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

70

3 Restart the system that uses the
file.

4 Open the file saved in step 2.
5 Save this file to the location of

the original test file using the
same name.

Either no warning should occur or
the file being saved should be
listed as the newer file.

 Globalization/internationalization2328

6.13.1 Definition2329
The process of modifying or developing a system that has an interface that is not limited2330
to the date/time information formats used by any specific country or social group.2331

6.13.2 Rationale2332
An application may be effectively remediated for one date format and yet fail when2333
another regional date format is required. The lack of a globally implemented date2334
standard complicates the issue of Year 2000 conversions. The order of date and time2335
information, separators used and different calendars all require conversions and special2336
logic. Any of these functions may distort or render the century digits ambiguous. ISO2337
8601 presents an international standard format for date and time information. Adherence2338
to this standard should reduce confusion and allow greater portability of the system2339
interface. However, for the great number of systems that were constrained by the2340
requirements of interfacing to the installed systems that pre-date ISO 8601 and therefore2341
do not use that standard, efforts must be made to interface reliably to them as they are.2342
Also, remediated systems may not adhere to ISO 8601 due to the impracticality of year2343
expansion and may present nonstandard formats to interfacing systems. Operating2344
systems generally provide the basic interface functions to accept and display data.2345
Applications must in turn provide complete, properly formatted information to the2346
operating system. The overall system must in turn be able to exchange data in agreed2347
upon formats acceptable to systems with similar setting as well as systems set for2348
completely different regions in different languages. Even systems that do not span2349
cultural boundaries can have similar interfacing problems. For instance, a remediated2350
system with a 2-digit format with one pivot year may have to interface with another2351
remediated system with a 2-digit format that uses a different pivot year. Embedded2352
systems generally must confront the same issues when interfacing with display modules2353
and with other systems.2354

6.13.3 Related elements - none2355

6.13.4 Test cases2356
No specific test cases will be referenced here in their entirety, rather, test cases will be2357
referenced and suggestions made as to how they may be adapted to suit globalization2358
and internationalization test objectives. Any other date specific globalization/localization2359
issue may need to be tested.2360

 2361
 Sub-clause Content Modification to test conditions or test procedure
 6.26 Sort Sort-control information should match the date format to

achieve the expected result.
 6.23 Query Query-control information should match the date format

to achieve the expected result.
 6.28 Date format Adapt the test conditions, procedures, and expected

results date format to coincide with each localized
environment. For example, U.S. may use MM-DD-YY
and a European country may use DD-MM-YY.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

71

 6.4.4.2
 6.4.3

 Holidays Holidays will vary with the specific region or country of
origin. For example, July 4 may be a recognized U.S.
holiday, but it is not similarly celebrated in other
nations.

 6.20 Parsing Parsing-control information must match the date format
to achieve the expected result.

 6.11 Error Trapping Error trapping must match the date format to achieve
the expected result. For example an error trap may trap
the year in two digits and the remediation changes the
date format to 4-digit format; the trap should also be
adjusted to match the 4-digit year. Or, an error may trap
the year in two digits and remediation keeps the year
format in two digits but the system now has an implicit
pivot year.

 2362

6.14 Synchronization of distributed networks2363

6.14.1 Definition2364
Time and date synchronization is the state at which time information from separate2365
nodes in a distributed network is equalized within some defined tolerance.2366

6.14.2 Rationale2367
Time and date synchronization over a distributed network may be a part of normal2368
operation. Distributed networks transfer time and date-data in different manners. One is2369
to periodically update other elements within the distributed network. An example of this2370
is a primary or reference timeserver updating secondary servers across the multi-server2371
network.2372

2373
Another manner in which date-data is distributed or updated is when network elements,2374
such as workstations, set the time and date upon specific tasks. One example of such2375
tasks would be the login process; if appropriately configured, a server can then set a2376
workstation’s date and time. Needless to say, the workstation must be capable of2377
accommodating date-data beyond 11:59PM on 1999-12-31.2378

2379
Tests described in this section attempt to validate network element’s capabilities of2380
setting and accommodating date-data beyond the Year 2000.2381

2382
2383
2384
2385

6.14.3 Related elements :2386
Tests for stand-alone hardware2387

6.14.4 Test cases2388

6.14.4.1 Primary and/or reference time servers and secondary servers.2389
I Test objective2390
Verify changing system time on primary or reference timeserver creates a
corresponding change in connected secondary servers

 2391
II Test conditions2392

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

72

Conditions
1 Network with one primary or reference server connected to multiple

secondary servers

2 Set date mode to an 8-digit data.
3 Servers are in same time zone

2393
III Procedure/results2394
Test procedure Expected test results
1 Set the primary or reference

server to 1999-12-31, 23:45:00
and check the time on all
secondary or replicated servers.

All clocks should match the
primary or reference server's.

2 Wait for the primary or reference
server date to reach 2000-01-01.
Check the time on all secondary
systems in the cell. The time
interval required before checking
all secondary servers depends on
many factors such as (but not
limited to) the processor load and
performance of the primary or
reference server, the quantity and
types of any remote sites, and the
number of client workstations
active on the network.

All clocks should match the
primary or reference server's.

3 Reboot the server and check its
system time

System time should be
approximately the same before
and after the reboot.

4 Check each secondary server’s
clock. Reset the secondary
servers and check system time.

All clocks should match the
primary or reference server's,
before and after the reset.

2395

6.14.4.2 Servers and workstations2396
I Test objective2397
Verify changing system time on a server will create a corresponding change to
client workstations during the next user logon.

 2398
II Test conditions2399
Conditions
1 LAN with one server connected to multiple client workstations.
2 Set date mode to a format that displays a 4-digit year.
3 Server is configured to update workstation time and date information.
4 Server and workstations are in same time zone.

2400

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

73

III Procedure/results2401
Test procedure Expected test results
1 Set the server to 1999-12-

31T23:45:00.

2 Set the client workstations clocks
and calendars to 1999-06-
01T12:00:00.

3 Logoff if necessary and power off
the client workstations.

4 Watch the server transition to
2000-01-01.

5 Power up the client workstations
and login to server.

6 Check the client workstations
time and date.

Upon completion of step 6 the
clocks of all client workstation's
should match that of the server

2402

6.14.4.3 System synchronization over multiple time zones.2403
2404

This test case checks a variation of a problem that occurs daily on systems that reside in2405
different time zones. Normally date transition would be separated by one or more hours2406
for such systems. In the 1999/2000 transition case, date transition may cause2407
differences of 100 years for a period of one or more hours. This may invalidate controls2408
on checking for acceptable data in transfers and may cause transactions to be rejected2409
erroneously.2410

2411
Remember that not all time zones are offset in whole hour increments. If the system may2412
be required to transmit data to and from time zones that have an offset expressed with a2413
fraction of an hour, the test case may need to be repeated for situations where one or2414
both of the systems are set to a fractional time zone.2415

2416
It is also important to remember that not all instances of Daylight Savings Time (DST) or2417
“Summer Time” are increments of whole-hours. For global businesses having2418
processing nodes in the Southern Hemisphere, the 1999/2000 transition will happen2419
during this “Summer Time”.2420

2421
For these tests it is important to recognize that time zone information may be stored2422
independently of the time setting in the system. In fact, this is normally the case. This2423
test case will be ineffective if the time zones are not set properly. This is particularly2424
important for the case of non-integral hour time zones where the time zone difference2425
will be some number of hours plus a fraction.2426

2427
I Test objective2428
Verify that the date difference caused by the Year 2000 transition has no effect
greater than the one-day date difference caused by the normal daily date
transition between systems in different time zones.

 2429
II Test conditions2430

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

74

Conditions
1 System A with a system date and time set to 1999-12-31T23:50:00 in

any arbitrary time zone.
2 System B with a system date and time of 1999-12-31T22:50:00.
3 System A and B are capable of communicating across a network.
4 System or application software that is sensitive to date/time differences

greater than one day.
2431

III Procedure/results2432
Test procedure Expected test results
1 Create test data on system A
2 Transmit test data to system B Transmission should occur

normally and data should be
correct

3 Allow system A to roll over into
Year 2000

4 Repeat steps 1 and 2 Transmission should occur
normally and data should be
correct

5 Create test data on system B
6 Transmit test data from step 5 to

system A
Transmission should occur
normally and data should be
correct

6.14.4.4 System synchronization over multiple time zones (continued)2433
This test case is designed to verify the ability of a system to cope with the Year 20002434
rollover across time zones that are separated by a non-integral number of hours. This2435
can occur because the normal time zone offset is a non-integral number of hours from2436
UTC or because the Daylight Savings Time or “Summer Time” adjustment is not a whole2437
hour. Both cases occur across the globe and should be of special concern to2438
multinational enterprises.2439

2440
I Test objective2441
Verify that the date difference caused by the Year 2000 rollover has no effect
greater than the one day date difference caused by the normal daily date
transition between systems in different time zones where those time zones are
offset by a non-integral number of hours. The example given is artificial, but a
real-life example can be constructed using time zones in the United States for
one system and time zones in parts of northern or southern Australia for the
other. Refer to a table of international time zones for specifics if needed.

 2442
II Test conditions2443
Conditions
1 System A with a system date and time set to 1999-12-31T23:50 in any

arbitrary time zone with an integral number of hours offset from UTC,
e.g. UTC + 8.0

2 System B with a system date and time of 1999-12-31T22:50 in a time
zone with a non-integral numbers of hours offset from UTC, e.g. UTC +
7.5

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

75

3 System A and B are capable of communicating across a network.
4 System or application software that is sensitive to date/time differences

greater than one day.
2444

III Procedure/results2445
Test procedure Expected test results
1 Create test data on system A
2 Transmit test data to system B Transmission should occur

normally and data should be
correct

3 Allow system A to roll over into
Year 2000

4 Repeat steps 1 and 2 Transmission should occur
normally and data should be
correct

5 Create test data on system B
6 Transmit test data to system A Transmission should occur

normally and data should be
correct

7 Allow system B to roll over into
Year 2000

8 Repeat steps 1, 2, 5 and 6 Transmission should occur
normally and data should be
correct.

2446
2447

6.15 Import/export2448

6.15.1 Definition2449
The processes of converting one file format to another in order to use data in more than2450
one system.2451

6.15.2 Rationale2452
After remediation, and depending on the remediation used, two systems may be unable2453
to exchange date data, or date data may be exchanged but the meaning of the dates2454
may be different in each system. The century interpretation logic may not be accessible2455
to the receiving application.2456

2457

6.15.3 Related elements2458
 Multi-System Windowing2459

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

76

6.15.4 Test cases2460

6.15.4.1 Database conversion exchange2461
Date values of original files will retain and express the correct century-digit information2462
after conversion to a new data format.2463

I Test objective2464
Ensure that importing a database from an application that uses a sliding date
window to one that uses an eight-character date will produce equivalent data in
both applications.

 2465
II Test conditions2466
Conditions
1 Set system time to 1999-01-01
2 Application A that requires an 8-digit date field.
3 Application B that uses a database with a 6-digit date field and a sliding

date window from 1930 to 2029 set to increment the pivot year at the
end of each year.

4 A database for application B with records having the following date
fields.

1930-01-01
1999-12-31
2000-01-01
2029-12-31

2467
III Procedure/results2468
Test procedure Expected test results
1 In application A import the data

base from application B. Open
the database and check each
record date field.

The following dates should be
present.
1930-01-01
1999-12-31
2000-01-01
2029-12-31

2 Set the system time forward 1
year. Wait for database in
application B to update. Check
each record date field.

The following dates should be
present.
1999-12-31
2000-01-01
2029-12-31

3 In application B add records with
the dates 1931-01-01 and 2030-
12-31. Then sort by date, and
check the results.

The following dates should be
present.
1931-01-01
1999-12-31
2000-01-01
2029-12-31
2030-12-31

4 In application A import the
database from application B.
Open the database, and check
each record date field.

The following dates should be
present.
1931-01-01
1999-12-31
2000-01-01
2029-12-31
2030-12-31

2469

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

77

6.15.4.2 Maintaining database integrity2470
If data is transferred from a source that has a wider valid date range than can be2471
represented in the format of the destination database it may be impossible to transfer2472
some date-data to the destination database. In the case below 8-character dates must be2473
transferred into 6-character fields. Using the standard 6-character data format limits the2474
destination database to storing dates within a 100-year window. If dates outside this2475
window are not detected and processed separately, the system is likely to corrupt the2476
database by erroneously changing these out of range dates to dates that fall within the2477
window. Depending on the design of the database, the system may eliminate records2478
containing out of range dates, produce an error and not allow the database to be2479
transferred, request that the user enter a value within the range, etc. The system2480
specification and other documentation should define how dates outside the current2481
window will be represented in the database. In this test case it is assumed that out of2482
range values are automatically replaced with an indicator value that the system displays2483
as “Out of Range”.2484

2485
I Test objective2486
Ensure that importing a database from an application that uses a 2-character
year to one that uses a sliding date window will produce equivalent data in both
applications

 2487
II Test conditions2488
Conditions
1 Set system date to 1999-01-01
2 Application A that requires an 8-digit date field.
3 Application B that uses a database with a 6-digit date field and a sliding

date window from 1930 to 2029 set to increment the pivot year at the
end of each year.

4 A database for application A with records having the following ID and
date fields.
ID Date
1 1929-12-31
2 1930-01-01
3 1999-12-31
4 2000-01-01
5 2029-12-31
6 2030-01-01

2489
III Procedure/results2490
Test procedure Expected test results
1 In application A export the data-

base to application B. Open the
database in application B and
check each records date field.

The following records should be
present.
ID Date
1 Out of Range (see note)
2 1930-01-01
3 1999-12-31
4 2000-01-01
5 2029-12-31
6 Out of range (see note)
Note 1: These records contain
dates that fall outside application
B’s valid date range. They may be
modified in other ways than shown
as described in the introduction of
this test case.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

78

2 Set the system time forward 1
year. Wait for application B’s
database to update. Check each
record’s date field.

The following records should be
present.
ID Date
1 Out of Range (see note 1)
2 Out of Range (see note 2)
3 1999-12-31
4 2000-01-01
5 2029-12-31
6 Out of Range (see note 3)
Note 2: This record moved outside
the sliding window as the pivot
year changed
Note 3: Even though the date in
record 6 on application A is now
within application B’s valid date
range. It may still be represented
as Out of Range until it is updated
from database A.

3 In application A add records with
the dates 1930-12-31, 1931-01-
01, 2030-12-31 and 2031-01-01.
Then sort by date and check the
results.

ID Date
1 1929-12-31
2 1930-01-01
3 1930-12-31
4 1931-01-01
5 1999-12-31
6 2000-01-01
7 2029-12-31
8 2030-01-01
9 2030-12-31
10 2031-01-01

4 In application A export the data
base to application B. Open the
database in application B and
check each records date field.

The following records should be
present.
ID Date
1 Out of Range (see note 1)
2 Out of Range (see note 1)
3 Out of Range (see note 1)
4 1931-01-01
5 1999-12-31
6 2000-01-01
7 2029-12-31
8 2030-01-01
9 2030-12-31
10 Out of Range (see note 1)

2491

6.15.4.3 File import/export2492
During the remediation process it may be necessary to change the date storage format2493
to allow for the representation of post-Year 2000 dates within a system or system2494
element. If a file is exported from this remediated system the file’s date format may need2495
to be extended to allow these dates to be interpreted. It is also possible that the system2496
that will process the file may misinterpret dates due to the change in format or date2497
range.2498

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

79

2499
I Test objective2500
Ensure that exported formatted date data date-data from a remediated system
will be properly imported into a secondary system

 2501
II Test conditions2502
Conditions
1 Two systems (or system elements) with date set beyond 1999-12-31

2503
III Procedure/results2504
Test procedure Expected test results
1 Create a file to be exported which

contains various date-data. The
date-data should be pre- and post
Year 2000 rollover.

2 Export file.
3 Import file into secondary system. Pre- and post Year 2000 rollover

data is accurately represented.
4 Export file from secondary

system and import into first.
Pre- and Post Year 2000 rollover
data is accurately represented.

2505

6.16 Multi-system windowing2506

6.16.1 Definition2507
Multi-system windowing pertains to the interoperability between two systems or system2508
elements using windowing techniques especially with respect to the transference of date-2509
data between them.2510

6.16.2 Rationale2511
Although two remediated systems may separately operate normally, there is potential for2512
error during data transfer between them. If one of the systems is using a date windowed2513
technique to determine century information, then the two systems may need to agree on2514
what the pivot year will be. If they agree, the transmission of dates between the systems2515
must then be limited to the 100 year span determined by the pivot year. If both systems2516
have windows with different pivot years, the date-data must be within the intersection of2517
those windows, unless the window information is also transmitted as part of the interface.2518
For example, a motor vehicle registration office might not be concerned with traffic2519
records over 7 years old so a pivot year of 1990 would give them until 2089 to change to2520
four digit year codes. The system that keeps track of drivers license renewals would2521
have to work with birth dates back to the early 1900s so 1905 to 2005 might be a good2522
date window. In this case, the exchange of date information would be limited to 1990 to2523
2005. Outside this range, dates would be misinterpreted by 100 years.2524

2525

6.16.3 Related elements2526

6.16.4 Test cases2527

6.16.4.1 Application to application conflict of valid windows.2528
I Test objective2529
Verify handling of date-data between two systems is not erroneous due to
conflict of valid windows with different pivot years.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

80

 2530
II Test conditions2531
Conditions
1 Two systems capable of accommodating the Year 2000 rollover.
2 Each system or system element must be capable of unidirectional or

bi-directional communication.
3 Each system must have differing pivot years where window information

is not transmitted as part of the interface.
2532

III Procedure/results2533
Test procedure Expected test results
1 Determine pivot year for each

application. If not found in
documentation, The pivot year
can be found by generating
various test cases (using 2-digit
years) and determining at which
point the century information
changes from 19XX to 20XX.

2 Find Date Ranges: Compare the
pivot years for each system.
Determine which dates are
commonly agreed upon between
the systems and which are not.
i.e., when comparing the date
ranges of each system:

a) Common Windows: The set of
all 6-digit dates for which both
windows will interpret the date to
an equivalent 8-digit date

b) Conflicting Windows: The set
of all 6-digit dates for which the
two windows will interpret the
date as an 8-digit date on
different sides of the 1999/2000
boundary.

3 Generate a test file that contains
date-data commonly on both
sides of the 1999/2000 boundary
as well as data that is in the
conflicting range.

4 Transfer the test file from one
system to another and inspect the
data.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

81

5 Repeat step 4 but transfer data in
the opposite direction if bi-
directional communications
transfers are supported.

The date interpretation of the first
system should match that of the
second..
Year data that is in the conflicting
window should either show an
error message or should show a
date in a predicted manner (i.e., as
predicted to be in either 19XX or
20XX).

6.17 Licensing2534

6.17.1 Definition2535
Licensing procedures automatically enable and disable a system, in accordance with the2536
terms of a legal agreement between the developer and the customer. Not all licenses are2537
permanent. In some cases the system may restrict customer access to all or part of the2538
system after a specified date, or after a period of time from installation has elapsed.2539
These systems often encode dates into license keys that can be used to set license2540
expirations .2541

6.17.2 Rationale2542
If the term of the license extends across the Year 2000 rollover then subtracting the2543
dates will return a value that can never reach the desired termination. Consider a 5-year2544
license starting in 1997. If the range of years for the system is 00 to 99 there is no2545
number in the range that 97 can be subtracted from to yield 5, so the trigger can not2546
occur. On the other hand, adding 5 to the current date’s 2-digit year may yield a value of2547
102, which is also out of range.2548

6.17.3 Related elements2549
Event-triggers2550

6.17.4 Test cases2551

6.17.4.1 Termination of application license2552
 In some instances expiration of a license occurs after the correct actual lapsed2553
time from the installation. This lapsed time should be consistent regardless of2554
1999/2000 transition.2555

I Test objective2556
Verify that license expiration will occur on schedule after the Year 2000 rollover.

 2557
II Test conditions2558
Conditions
1 An application that will return an error when opened if the license is

expired.
2 License keys for 30 days, 365 days, permanent and terminating on the

following dates.
1999-09-09
1999-12-31
2000-01-01
2000-02-29
2001-02-28

3 System clock set to 1999-02-15.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

82

2559
III Procedure/results2560
Test procedure Expected test results
1 Install a copy of the application

with a permanent key, open and
close it.

The application should open
normally

2 Change the system time to 1999-
09-08T23:59:00. Wait for 2
minutes, then open and close the
application.

The application should open
normally

3 Change the system time to 1999-
12-31T23:59:00. Wait for 2
minutes, then open and close the
application.

The application should open
normally

4 Change the system time to the
last day in the test period
23:55:00. Open and close the
application.

The application should open
normally

5 Uninstall the application. Check
for its associated directories and
known modifications to system
files. Attempt to run the
application.

Uninstall should leave no trace of
the application. It should not open
or return any messages that are
not operating-system generated.

6 Set system time to 1999-06-06.
Install a copy of the application
with a key that expires on 1999-
09-09, open and close it.

The application should open
normally

7 Change the system time to 1999-
09-08T23:59:00. Wait for 2
minutes, then open and close the
application.

The application should open
normally

8 Change the system time to 1999-
09-09T23:59:00. Wait for 2
minutes, then open and close the
application.

The application should display a
license expiration message and
not open.

9 Change the system time to 1999-
12-31T23:59:00. Wait for 2
minutes, then open and close the
application.

The application should display a
license expiration message and
not open.

10 Uninstall the application. Check
for its associated directories and
Known modifications to system
files. Attempt to run the
application.

Uninstall should leave no trace of
the application. It should not open
or return any messages that are
not operating-system generated.

11 Set system time to 1999-12-15.
Install a copy of the application
with a 30-day key, open and
close it.

The application should open
normally

12 Change the system time to 1999-
12-31T23:59:00. Wait for 2
minutes, then open and close the
application.

The application should open
normally

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

83

13 Change the system time to the
last day the license should be
good for 23:55:00. Open and
close the application.

The application should open
normally

14 Wait for 6 minutes, then open
and close the application.

The application should display a
license expiration message and
not open.

15 Repeat steps 10 - 14 for all
remaining keys.

Same results as 10 - 14 for all
remaining keys.

2561

6.18 Logs/date stamps2562

6.18.1 Definition2563
The creation of a file containing a record of transaction information over a time period.2564

6.18.2 Rationale2565
 The purpose of logs and date stamps is to give us a way to track events where order of2566
occurrence is important. They are often used to locate errors and to recover to a specific2567
time. If the date and time information contained in logs becomes inaccurate as the2568
system or system element transitions into the Year 2000, then the basic purpose is lost.2569
Examples:2570

Operating systems2571
Network software2572
 Email server software2573
 Database Systems2574

6.18.3 Related elements2575
 Synchronization2576
 Communications2577
 Database recovery2578

6.18.4 Test cases2579

6.18.4.1 Server log file2580
2581

I Test objective2582
Ensure that server log file dates will be correct after Year 2000 rollover.

 2583
II Test conditions2584
Conditions
1 Server with event logging enabled

2585
III Procedure/results2586
Test procedure Expected test results
1 Set the system date and time to

1999-12-31T23:55:00. Reboot the
server. Open the events log and
check the entry indicating the
logging process was started.

The time date stamp should be
1999-12-31 between 23:55:00 and
23:59:59.

2 Wait for the system date to
change to 2000-01-01. Reboot
the server. Open the events log

The date stamp should be 2000-
01-01.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

84

and check the entry indicating the
logging process was started.

6.18.4.2 End user log file2587
2588

I Test objective2589
Ensure that workstation log file dates will be correct after the Year 2000 rollover.

 2590
II Test conditions2591
Conditions
1 Workstation with event logging enabled

2592
III Procedure/results2593
Test procedure Expected test results
1 Set the system date and time to

1999-12-31 23:55:00. Create a
situation that results in an entry in
the log being tested. Open the
events log and check the entry
for the latest entry

The time date stamp should be
1999-12-31 between 23:55:00 and
23:59:59.

2 Wait for the system date to
change to 2000-01-01. Reboot
the workstation. Open the events
log and check the entry for the
latest entry

The date stamp should be 2000-
01-01.

2594

6.19 Merge2595

6.19.1 Definition2596
To combine two or more data sources into a data file with a specified organizational2597
structure.2598

6.19.2 Rationale2599
Data stored in multiple files may contain dates both before and after the turn of the2600
century and dates stored in different formats. Merge routines must be able to interpret2601
and distinguish these dates in order to merge records correctly. A database may store2602
dates with a 4-character year, but the merge procedure of a system may still not properly2603
interpret them. Some systems may use a single merge procedure for both 6 character2604
and 8 character date keys by ignoring the top two digits of the 8-character date’s year,2605
effectively creating a 100-year window. When the date keys span Year 2000 rollover, the2606
dates 2000-01-01 and after may be interpreted as earlier than dates before rollover.2607

6.19.3 Related elements2608
 Archive restoration2609
 Databases2610
Multi-System Windowing2611

6.19.4 Test cases2612
 2613

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

85

6.19.4.1 Non-conflicting date formats2614
2615

I Test objective2616
This test determines the ability to merge two different data sources with the
same data formats across the Year 2000 boundary.

 2617
II Test conditions2618
Conditions
1 Two data files using the same date format
2 One data file contains date-data that spans across the Year 2000

boundary.
3 The second data file contains date-data which doesn’t span the Year

2000 boundary
4 Data files must be sorted with key data, which are the dates in

question. These may include boundaries of the valid date intervals,
dates close to Year 2000 rollover, and other high risk dates associated
with the system.

2619
III Procedure/results2620
Test procedure Expected test results
1 Merge the two data files into a

third data file
Resultant data file is in appropriate
date order.

2621

6.19.4.2 Conflicting date formats2622
When merging two databases that have the same fields, instances may occur where2623
older date-data may be in 6-character format and the newer data is in 8-character2624
format.2625

2626
I Test objective2627
This case verifies that an ascending order merge sort results in a correctly dated
and ordered output list in 8 character format when data includes both 6 and 8
character dates and spans two centuries.

 2628
II Test conditions2629
Conditions
1 Database A using an 8-character date format with the following entries

in the date fields.
YYYY-MM-DD
1900-01-01
1997-07-07
1999-12-31
2044-04-04
2100-12-31

2 Database B using a 6-character date with a pivot year 1920 and the
following entries in the date fields.

YY-MM-DD
20-01-01
77-07-06
99-12-31
00-01-01
19-12-31

2630

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

86

III Procedure/results2631
Test procedure Expected test results
1 Merge database A with database

B.
2 Sort the merged data in

ascending date order.
3 Store the result in a new file C in

8-character date format.
File C should be created.

4 Open file C and view its content. Records should be in the following
order and dates should be in a
format that shows the century.
(Note that the ordering of 6
character and 8 character formats
equivalent to the same date is
immaterial for these purposes.)

1900-01-01
1920-01-01
1977-07-06
1997-07-07
1999-12-31
1999-12-31
2000-01-01
2019-12-31
2044-04-04
2100-12-31

5 Repeat steps 1 to 3, sorting the
merged data in descending date
order in step 2.

Records should be in the same
format but in reverse order from
the result for step 4 above.

2632

6.19.4.3 Merge-link2633
The merge-link procedure used in the test case creates one database from two source2634
databases linked by a shared field. The resulting database contains fields from both2635
original databases. The shared date field has one entry for each discrete value from2636
either source database. Records for dates that appear in both source databases should2637
have values for all fields that had values in either source. Dates that appear in only one2638
source database will have null values for the fields that exist only in the other database.2639
This is not the only possible implementation for a merge-link. The results of the test may2640
vary depending on the specific implementation. The results for a specific system should2641
be repeatable, useful within the context of the system’s purpose and consistent with2642
results for a similar test where all dates are prior to Year 2000.2643

2644
I Test objective2645
When merging two databases that are linked by dates, and the dates in one
database are in 6-character format and those in the other are in 8-character
format, verify that the results of a merge correctly match data fields for the
same date.

 2646

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

87

II Test conditions2647
Conditions
1 Database A using an 8-character date format with the following entries

in its data and date fields.
FIELD1 YYYY-MM-DD
1 1899-12-31
2 1900-01-01
3 1919-12-31
4 1920-01-01
5 1977-07-07
6 1999-12-31
7 2000-01-01
8 2019-12-31
9 2020-01-01
10 2099-12-31

2 Database B using a 6-character date with a pivot year 1920 and the
following entries in its data and date fields.

FIELD2 MM-DD-YY
A 01-01-20
B 07-06-77
C 12-31-99
D 01-01-00
E 12-31-19

2648
III Procedure/results2649
Test Procedure Expected test results
1 Merge-link by date-database A

with database B and store the
result in a new database C.

Database C should be created.

2 Open database C and view its
content.

Database C contains the following
records.
Field1 Date Field2
1 1899-12-31
2 1900-01-01
3 1919-12-31
4 1920-01-01 A
 1977-07-06 B
5 1977-07-07
6 1999-12-31 C
7 2000-01-01 D
8 2019-12-31 E
9 2020-01-01
10 2099-12-31

2650

6.20 Parsing/validation2651

6.20.1 Definition2652
Dividing a stream of data into individual objects that can be easily interpreted by the2653
system.2654

6.20.2 Rationale2655
In the process of converting input into arguments to be passed to procedures, the2656
century data may be discarded by parsing functions. Testing of parsing functions2657

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

88

ensures that all input information is available to computational and storage functions.2658
Some parsing functions may convert input data containing only two digits of year2659
information by supplying assumed century data, perhaps as part of a windowing2660
procedure. Some parsing functions may also validate input data, e.g., by checking for2661
correct recognition of leap year days (2000-02-29) and rejecting invalid or ambiguous2662
dates (2000-02-30, 2000-13-32, 03-02-04). Validation is sometimes performed as a2663
separate procedure following initial parsing of input, and the test cases below may be2664
adapted for use in those circumstances.2665

6.20.3 Related elements2666
Windowing, Compilers2667

6.20.4 Test cases2668
This test case assumes that the Parsing/Validation system element may be unit tested2669
through a debugger or test scaffolding that allows direct manipulation of inputs and2670
interpretation of its outputs. In this particular design outputs retain the values of the last2671
valid input. Other designs might have different post conditions; i.e. setting the output2672
variables to a null value.2673

6.20.4.1 Screen input2674
2675

I Test objective2676
Verify that date-input function correctly parses information the user enters on
screen into individual date variables.

 2677
II Test conditions2678
Conditions
1 A program for date-input function for on screen entry.
2 Date format set to YYYY-MM-DD
3 Screen input is parsed and stored as 4 character year, 2 character

month, and 2 character day.
2679

III Procedure/results2680
Test procedure Expected test results
1 Enter 1999-12-31 as date Variable values should be

YYYY=1999, MM=12, andDD=31
2 Enter 2000-01-01 as date Variable values should be

YYYY=2000, MM=01, and DD=01
2681

6.20.4.2 Date retrieval2682
2683

I Test objective2684
Verify that date retrieval function correctly retrieves 8-character date information
from database records.

 2685

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

89

II Test conditions2686
Conditions
1 Database program setup for retrieving records with date key

information.
2 Date format set to YYYY-MM-DD
3 Test database for each supported date format with date field records

with the following values:
1999-21-31
2000-01-01

3 Date-data is parsed and stored as 4 character year, 2 character
month, and 2 character day.

2687
III Procedure/results2688
Test procedure Expected test results
1 Retrieve date from first record of

the database.
Variable values should be
YYYY=1999, MM=12, DD=31

2 Retrieve date from second record
of the database

Variable values should be
YYYY=2000, MM=01, DD=01

2689

6.20.4.3 Screen input validation2690
I Test objective2691
Verify the date-input function correctly validates date information entered by the
user on the screen

 2692
II Test conditions2693
Conditions
1 Program for date-input using on screen date entry, which validates that

input consists of only valid dates.
2 Date format set to YYYY-MM-DD

2694
III Procedure/results2695
Test procedure Expected test results
1 Enter 1999-12-31 as a date No error indicated
2 Enter 199P-12-31 as a date Meaningful Error message should

be given
3 Enter 1999-1P-31 as a date Meaningful Error message should

be given
4 Enter 1999-12-PP as a date Meaningful Error message should

be given.
5 Enter 2000-01-01 No error indicated
6 Enter 2000-02-29 No error indicated
7 Enter 2001-02-29 Meaningful error message should

be given
8 Enter the date 2000-00-10 Meaningful error message should

be given
9 Enter the date 2000-13-10 Meaningful error message should

be given
10 Enter the date 2000-09-31 Meaningful error message should

be given
11 Enter the date 2000-09-00 Meaningful error message should

be given

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

90

12 Enter the date 99-12-31 Meaningful error message should
be given

13 Enter the date 00-01-01 Meaningful error message should
be given

2696

6.21 Performance2697

6.21.1 Definition2698
Operation’s effectiveness as measured by a comparison of task completion times or2699
system resources necessary for task completion.2700

6.21.2 Rationale2701
The speed of queries, sorts, and computations may all be adversely affected by changes2702
necessary to handle dates beyond Year 2000 rollover. Changing data formats may2703
increase drive space necessary to store date-data. If documentation of performance2704
specifications exists, the tests used to verify performance claims should be repeated to2705
verify the accuracy of these figures. For better accuracy tests may be changed and tests2706
conducted using current dates, rollover transition dates, and dates after Year 20002707
rollover. Test data should be aged to make it consistent with expected data for the time2708
frame being tested.2709

6.21.3 Related elements - none2710

6.21.4 Test cases2711

6.21.4.1 Performance regression2712
Performance claims can be maintained across the Year 2000 rollover. Data that spans2713
two centuries will not cause unwarranted degradation of performance.2714

I Test objective2715
Verify that performance will stay within published specifications.

 2716
II Test conditions2717
Conditions
1 Standard test environment with a standard set of test data that includes

date information.
2 There should be two additional sets of test data. One that has had the

date information modified to include a similar number of dates falling
on either side of the Year 2000 rollover. The second should hold dates
only after rollover. Adding a number of weeks to the original test data
can, in some instances, create these data sets.

2718
III Procedure/results2719
Test Procedure Expected test results
1 Perform a standard performance

test as outlined in current testing
procedures. Check results

Results should match published
performance claims.

2 Change the resource to use the
second set of test data. Modify
the system time by advancing it
the same number of weeks the
test data was advanced. Perform
performance test as outlined in

Results should match published
performance claims.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

91

current testing procedures. Check
results

3 Change the resource to use the
third set of test data. Set the
system time to the original test
system time plus the number of
weeks the test data was
advanced. Perform performance
test as outlined in current testing
procedures. Check results

Results should match published
performance claims.

2720

6.22 Operational time periods2721

6.22.1 Definition2722
The interval of time required for a cyclic phenomenon to complete a cycle and begin to2723
repeat itself.2724

6.22.2 Rationale2725
Accounting and scheduling applications often declare blocks of time known as periods to2726
group sets of data. If these sets can no longer be created or the information they contain2727
can no longer be accurately manipulated the application will fail. Tests that insure a2728
period has a valid start date (One that was prior to its end date.) may fail when the2729
period spans the Year 2000 Rollover. There may also be problems testing what2730
information belongs in a specific period.2731

6.22.3 Related elements2732
Calculations2733

6.22.4 Test cases2734

6.22.4.1 Period creation2735
Systems using time periods may allow users to create a new period by entering its2736
beginning and ending date. A check may be made to ensure that the beginning date2737
precedes the ending date. This check may fail when the time period spans Year 20002738
rollover.2739

1999-12-27 to 2000-01-02 → 99-12-27 < 00-01-022740
2741

I Test objective2742
Verify that a time period may be created that crosses Year 2000 rollover.

 2743
II Test conditions2744
Conditions
1 Standard test system

2745
III Procedure/results2746
Test Procedure Expected test results
1 Attempt to create a time period

starting Monday 1999-12-27 and
ending Sunday 2000-01-02

Time period should be created

2747

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

92

6.22.4.2 Grouping data by periods2748
2749

I Test objective2750
Verify that weekly production data will be correctly summed when the weekly
period spans the Year 2000 rollover.

 2751
II Test conditions2752
Conditions
1 Production tracking system
2 Weekly period for 1999-12-27 to 2000-01-02

2753
III Procedure/results2754
Test Procedure Expected test results
1 Enter the following daily

production data.
Date Qty.
1999-12-27 1
1999-12-28 10
1999-12-29 100
1999-12-30 1000
1999-12-31 10000
2000-01-01 100000
2000-01-02 1000000

2 Check the total quantity for the
period 1999-12-27 to 2000-01-02

The total should be 1111111

2755

6.23 Queries, filters and data views2756

6.23.1 Definition2757
A higher-order function which takes a predicate and a list and returns those elements of2758
the list for which the predicate is true.2759

6.23.2 Rationale2760
Filters operate by taking portions of dates and comparing values to similar portions of2761
other dates. The ability to complete numerical comparisons on dates is essential to these2762
elements. Using a two-character year representation in a query for records dated after2763
the 6-digit date 00-01-01, for example, could return the entire database.2764

6.23.3 Test cases2765

6.23.3.1 Date comparisons2766
All logical operators will function normally in any combination. In all cases, dates after2767
the Year 2000 will be considered greater than any date before it.2768

I Test objective2769
Ensure that <, and, > operate normally when filtering a list of files by dates.

 2770
II Test conditions2771
Conditions
1 Test period 1870 – 2030
2 A set of test files created on the following dates.

a. 1870-01-01

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

93

b. 1880-08-08
c. 1899-12-31
d. 1900-01-01
e. 1950-05-05
f. 1999-12-31
g. 2000-01-01
h. 2011-11-11
i. 2030-12-31

2772
III Procedure/results2773
Test Procedure Expected test results
1 Get a listing of file filtered by the

following expressions
2 date < 1880-08-08 a
3 date > 1880-08-08 c, d, e, f, g, h, i
4 date < 1950-05-05 a, b, c, d
5 date > 1950-05-05 f, g, h, i
6 date < 2011-11-11 a, b, c, d, e, f, g
7 date > 2011-11-11 i

2774

6.23.3.2 Using ‘<,>’ operators2775
I Test objective2776
Verify that using inequalities in queries on databases that store dates both
before and after the Year 2000 will function properly.

 2777
II Test conditions2778
Conditions
1 Database with records having the following date fields

1999-01-01
1999-09-09
1999-12-31
2000-01-01
2000-02-28
2000-02-29
2000-03-01
2000-12-31
2001-01-01
2035-01-01

2779
III Procedure/results2780
Test Procedure Expected test results
1 Perform query to find all values

that are greater than 1999-12-10
and less than 2000-03-01

The query should return records
with the dates 1999-12-31, 2000-
01-01, 2000-02-28, and 2000-02-
29.

2 Perform query to find all values
that are less than 1999-12-10 and
greater than 2001-01-01

The query should return records
with the 1999-01-01, 1999-09-09,
and 2035-01-01

3 Perform query to find all values
that are less than 2000-01-01

The query should return records
with the dates 1999-01-01, 1999-
09-09, and 1999-12-31.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

94

4 Perform other queries as
necessary to check all logical
operators used in the system.

Results will vary but should
conform to standard logical
operations.

6.24 Data recovery2781

6.24.1 Definition2782
Salvaging data stored on media, such as magnetic disks and tapes when normal access2783
to the data is not available through normal system functions.2784

6.24.2 Rationale2785
File dates and times may be used to limit the number of files targeted by a recovery2786
element. If the specified range is open-ended, it might cause a great deal of2787
unnecessary data to be retrieved. If the recovery element is unable to distinguish the2788
century part of the file date, a request to recover all files deleted after 00-02-01 (YY-MM-2789
DD) might result in an attempt to restore any file deleted after 1900-02-01 (YYYY-MM-2790
DD) along with the intended files.2791

6.24.3 Related elements2792

6.24.4 Test cases2793

6.24.4.1 Selection of files to retrieve2794
2795

I Test objective2796
Verify that files deleted after Year 2000 rollover can be distinguished from pre-
Year 2000 files when recovering data.

 2797
II Test conditions2798
Conditions
1 System date set to pre-Year 2000 rollover date

2799
III Procedure/results2800
Test Procedure Expected test results
1 Create and save a test file called

“1999” then delete it.
2 Change the system date to 2000-

01-10.
3 Create and save a test file called

“2000” then delete it.
4 Immediately use the recovery

system element to retrieve files
dated after 2000-01-01.

Only the file “2000” should be
recovered.
Note: If other testing has caused
files to be created and deleted
after
2000-01-01 they may also be
recovered. No files dated prior to
Year 2000 rollover should be
recovered.

2801

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

95

6.24.4.2 Database recovery using transaction logs and a prior image2802
This test ensures that a database which operates across the Year 2000 rollover and2803
subsequently fails can be recovered by using an image taken before the Year 20002804
rollover and the logs of transactions which have occurred since then. The logs will2805
contain records of transactions occurring on both sides of the Year 2000 rollover. After2806
the test is completed the recovered database should reflect all committed transactions2807
recorded by those logs as well as all transactions recorded in the image taken prior to2808
the Year 2000. The order of occurrence for multiple transactions affecting single2809
database records should be maintained.2810

2811
I Test objective2812
Ensure that the state of a post Year 2000 rollover database can be
reconstructed from an image recorded prior to rollover by using transaction logs
that cross the Year 2000 boundary.

 2813
II Test conditions2814
Conditions
1 A functioning database and Database Management System (DBMS)

which processes transactions against that database and for which all
changes are recorded in one or more logs.

2 A recovery system element for the DBMS.
3 System date set sufficiently prior to 1999-12-31 that the procedure can

be accomplished before the date rolls over to 2000-01-01.
2815

III Procedure/results2816
Test procedure Expected test results
1 Run the application to process a

few transactions against the
database.

Database records should be
updated normally. All changes
should be logged correctly.

2 Create an image of the database
at some point in time prior to the
Year 2000 transition.

The image should represent the
state of the database at the time
the image was taken.

3 Continue running the application.
Transactions should be
processed that make changes to
the database both before and
after Year 2000 rollover.
Resetting the system date if
required.

The database should be updated
normally. All changes should be
logged correctly.

4 Stop, terminate or crash the
database in mid-transaction.

The database should now require
recovery due to an uncertainty of
state.

5 Run the recovery procedure
appropriate for the database,
using Image created in step 2 and
the logs of transactions that have
occurred since the image was
taken.

All database records updated by
transactions committed since the
last image was taken should be
properly recovered. Check each
changed database record to
ensure that order of occurrence
has been preserved where a single
record is affected by multiple
transactions.

2817

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

96

6.25 Bridge testing2818

6.25.1 Definition2819
2820

A bridge is a computer program operating between systems or parts of a system, that2821
receives date information in one format and converts it to another format.2822

6.25.2 Rationale2823
2824

When systems having several components are modified to become Year 20002825
compliant, typically not all can be made compliant at once. As programs are modified,2826
special bridges must be established to ensure that compliant elements do not cause non-2827
compliant elements to fail, and vice versa. The use of bridges may also be a deliberate2828
design choice, particularly for systems having large databases for which field expansion2829
is not chosen as an option. These "bridges" between system elements must be tested to2830
ensure they process dates correctly.2831

6.25.3 Test cases2832

6.25.3.1 Bridge date conversion2833
2834

The bridge program must be able to correctly process all of the date formats that are2835
used by the data it processes through its Year 2000 time horizon.2836

2837
I Test objective2838
Verify that the bridge is able to accept and correctly format the outputs of all date
formats likely to be used by the data it processes in a Year 2000 environment. It is
assumed that the bridge will convert two digit dates to four digit dates, and vice
versa. I.e., the bridge is bi-directional

 2839
II Test conditions2840
Conditions
1 A file of data to be converted by the bridge has data in two digit years.

The file contains dates in the format used by the application. Consider the
following date format possibilities:

2 A file of data to be converted by the bridge has data in four digit years.
Consider the following date format possibilities:

2841
Four Digit Two DigitInput Date
Format Input/Output Format Input/Output

1999-12-31 MM/DD/YYYY 12/31/1999 MM/DD/YY 12/31/99
2000-12-31 MM-DD-YYYY 12-31-2000 MM-DD-YY 12-31-00
1999-12-31 MM.DD.YYYY 12.31.1999 MM.DD.YY 12.31.99
2000-12-31 YYYY/MM/DD 2000/12/31 YY/MM/DD 00/12/31
1999-12-31 YYYY-MM-DD 1999-12-31 YY-MM-DD 99-12-31
2000-12-31 YYYY.MM.DD 2000.12.31 YY.MM.DD 00.12.31
1999-12-31 DDMMYYYY 31121999 DDMMYY 311299
2000-12-31 YYYYMMDD 20001231 YYMMDD 001231

2842

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

97

III Procedure/results2843
Test Procedure Expected test results
1 Execute the bridge program using

the appropriate file of date-data.
2 Inspect the converted data. The converted dates should match

the expected date format results
shown in the table above.

2844

6.25.3.2 High risk date processing2845
The bridge should be able to correctly process all high-risk dates that may be included as2846
data for conversion.2847

2848
I Test objective2849
Verify that the bridge correctly processes all high-risk dates included in data to
be converted.

 2850

High risk dates

Four Digits Two Digits

1999-01-01 99-01-01
1999-09-09 99-09-09
1999-12-31 99-12-31
2000-01-01 00-01-01
2000-12-31 00-12-31
2000-02-28 00-02-28
2001-01-01 01-01-01
2000-02-29 00-02-29
2001-02-29* 01-02-29*

* This date may produce an error if the bridge is responsible for detecting non-2851
existent dates. If non-existent dates are detected in another system element the2852
bridge may be required to accurately convert these dates so that they may2853
continue to trigger error detection in other modules.2854

2855
II Test conditions2856
Conditions
1 A bridge is prepared to accept data for conversion.
2 The file to be converted contains the high-risk date-data shown below.

2857
III Procedure/results2858
Test Procedure Expected test results
1 Execute the bridge program.
2 Inspect the dates that are output Output dates should match the

expected results noted in the table
above.

6.25.3.3 Bridge date window functionality2859
When date windowing algorithms are used in a bridge program to determine the correct2860
century digits for a two-digit year, the windowing function should be tested.2861

2862
I Test objective2863

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

98

Verify that two digit dates are correctly converted to four digit dates when
windowing techniques are used.

 2864
II Test conditions2865
Conditions
1 A bridge is prepared to accept a data file for conversion.
2 Type of windowing implemented in the bridge is understood (fixed,

movable, sliding).
3 Window boundaries are identified. These boundaries are unique to

each application.
4 A data file is prepared containing dates (two or four digits) that are

immediately before each boundary, on each boundary, and beyond
each boundary.

2866
III Procedure/results2867
Test Procedure Expected test results
1 Execute the bridge program on

the test data file.
2 Inspect the resulting converted

dates.
Those dates that were within or
equal to the window boundaries
should have "19" as the century
digits and be processed
accordingly. Dates that were
outside the window boundaries
should have the "20" century digits
and be processed accordingly.

6.25.3.4 Database conversion2868
I Test objective2869
Verify that a function that converts a database for use by an application that
works within a date window will filter out records with dates outside that window.

 2870
II Test conditions2871
Conditions
1 Conversion routine with pivot year set to 1960
2 Target application
3 Database that uses 8-character dates.

1900-01-01
1959-12-31
1960-01-01
1999-12-31
2000-01-01
2059-12-31
2060-01-01
2999-09-09

2872
III Procedure/results2873
Test Procedure Expected test results
1 Run conversion utility on the

database and save the result in
B.

File B should be created.

2 Open database B and view its
content.

The date fields in database B
should contain.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

99

1960-01-01
1999-12-31
2000-01-01
2059-12-31

2874

6.26 Sorting2875

6.26.1 Definition2876
To arrange data by value.2877

6.26.2 Rationale2878
Sorting system elements rely on their ability to find truth values for the functions ‘>, =, <’2879
when comparing date values. In some cases, a sort routine may interpret dates after the2880
Year 2000 rollover as prior to 1999. An ascending order sort of data that spans the Year2881
2000 rollover might return a listing starting at 2000-01-01 and ending at 1999-12-31, with2882
the most recent and the oldest data lost somewhere in the middle.2883

6.26.3 Related elements2884
 Databases, Parsing, Filtering, Merge2885

6.26.4 Test cases2886

6.26.4.1 Data file sorted by date2887
 Sorting a data file by ascending date should produce a sequence of records in2888
which the earliest record dated in the Year 2000 should immediately follow the2889
latest record for 1999 and all other records are be in order within their century.2890
 2891
I Test objective2892
Verify that sorting a data file by date produces a properly ordered list when the
date field contains dates on both sides of the 1999 to 2000 boundary.

 2893
II Test conditions2894
Conditions
1 Application using a data file with records having the following date

fields.
2000-01-01
1900-01-01
1925-07-04
2022-02-02
2029-12-31
1999-09-09
1999-12-31

2895

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

100

III Procedure/results2896
Test Procedure Expected test results
1 Sort the data file in ascending

order by date. Display and/or
print the results.

The dates should be displayed
and/or printed in the following
order.

1900-01-01
1925-07-04
1999-09-09
1999-12-31
2000-01-01
2022-02-02
2029-12-31

2 Sort the data file in descending
order by date. Display and/or
print the results.

The dates should be displayed
and/or printed in the following
order.

2029-12-31
2022-02-02
2000-01-01
1999-12-31
1999-09-09
1925-07-04
1900-01-01

6.26.4.2 Ordering a table2897
2898

I Test objective2899
Verify that a printed list of tasks can be ordered by task end date when the
project duration will cross the 1999 to 2000 boundary.

 2900
II Test conditions2901
Conditions
1 An application for project scheduling and a project with tasks that have

the following dates.
Start date End date
1999-12-06 1999-12-31
1999-12-15 2000-01-01
1999-12-14 2000-01-05
1999-12-29 2000-01-04
2000-01-01 2000-01-03
2000-01-01 2001-01-01

2902
III Procedure/results2903
Test Procedure Expected test results
1 Open the project in the

application. Create a report with
an ascending order list based on
task completion Display and/or
print the report.

The tasks should be listed in the
following order.
1999-12-06 1999-12-31
1999-12-15 2000-01-01
2000-01-01 2000-01-03
1999-12-29 2000-01-04
1999-12-14 2000-01-05
2000-01-01 2001-01-01

2904

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

101

6.27 User Interface (Input and Output)2905

6.27.1 Definition2906
This pertains to the means by which the user sends data into a system or system2907
element and also by which the user interprets data from the same system.2908

2909

6.27.2 Rationale2910
A user needs to be able to intuitively and efficiently enter data and interpret date-data2911
from a system or system element. If date-data shortcuts are designed into the interface,2912
a means should be available to unambiguously identify the data.2913
If a six-digit date format, (YY-MM-DD) is included to reduce keystrokes an2914
accompanying note may be necessary to identify the range of possible dates. On-line2915
help systems may need a review in order to document new screen and output formats.2916

6.27.3 Examples:2917
 GUI’s2918
 Screen text2919
 Printed reports2920

6.27.4 Related elements2921

6.27.5 Test cases2922

6.27.5.1 Display four digit year2923
2924

I Test objective2925
Ensure that in time card screen form, start-of -period and end–of-period dates
display in YYYY-MM-DD format.

 2926
II Test conditions2927
Conditions
1 System time set to 1999-12-27
2 Weekly time periods setup for 1999-12-26 to 2000-01-09

2928
III Procedure/results2929
Test Procedure Expected test results
1 Create time cards for both

periods, and check the displayed
dates

The cards are dated as follows.
1999-12-26 to 2000-01-01
2000-01-02 to 2000-01-09

2930

6.28 Date format2931

6.28.1 Definition2932
An ordered arrangement of symbols, or data values used to define a day within a2933
specified calendar system.2934

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

102

6.28.2 Rationale2935
Date formats vary depending on local custom. It is important that all date formats2936
accepted by an application continue to be accepted and processed validly after Year2937
2000 remediation. Test cases in this section are designed to demonstrate that these date2938
formats continue to work correctly.2939

6.28.3 Related elements - Globalization/internationalization2940

6.28.4 Test cases2941

6.28.4.1 Time/date input/output2942
2943

I Test objective2944
Verify that all time/date-input formats available for the currently selected country
continue to be accepted by the application in the Year 2000.

 2945
II Test conditions2946
Conditions
1 A remediated application with selectable date/time formats

2947
III Procedure/results2948
Test Procedure Expected test results
1 Set the application to its native

date format
2 Enter a series of test dates

spanning the Year 2000 transition
All dates should be stored and
displayed correctly

3 Select different date format.
4 Display the previously entered

dates
All dates entered in step 2 are
correctly displayed in the new
format.

5 Enter a second series of test
dates spanning the Year 2000
transition

All dates should be stored and
displayed correctly

6 Display the previously entered
dates

All dates entered in step 2 are
correctly displayed in the new
format.

7 Repeat steps 3 through 6 for all
other supported formats.

6.28.4.2 Reports2949
I Test objective2950
Ensure that report date stamps will be correct after Year 2000 rollover.

 2951
II Test conditions2952
Conditions
1 System Date set to 2000-01-01

2953
III Procedure/results2954
Test Procedure Expected test results
1 Print a report and check it’s date. The date should be 2000-01-01
2 Change the system date to the

last day of the test period. Print a
The date should be the same as
the system date

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

103

report and check its date.
3 Repeat steps 1 and 2 for each

supported date format.
The same results as 1 and 2 for
each supported date format.

2955

Annex - A Search strings (informative)2956
 Certain strings are likely to contain date sensitive information for parsing. These could2957
be in indexes, Table sizes, Data Dictionaries, Sort Routines, Filter routines, Date2958
variables or documentation. This list is not to be considered all-inclusive. Less standard2959
variable names may also have been used. In addition, formulas may have been use to2960
convert to other formats that would have their own sets of identifiers. Searches for2961
variable names can only be used as a starting point in finding affected system elements.2962
Both functions called using theses parameters and functions containing the strings are2963
suspect.2964
 2965

 ANNIV DD PAYROLL
 ANNIVERSARY DDDYY PROMOTION
 AS-OF DDMMYY RETIRE
 ASAP DFDT RELEASE
 ASOF DIFFDATE START
 BEG DOB T-O-D
 BEGIN DOH TERM
 BGN DTE TIME
 BIRTH DT TIME-STAMP
 CCYY END TIMEDATE
 COMMISSION ENLIST TIMESTAMP
 CYYDDD ENLISTMENT THISDATE
 CYYDDMM EXP TOD
 CYYMMDD EXPIRE TSTAMP
 CURR HIRE WEEK
 CURRENT MDY WEEKDAY
 DA MMDDYY YEAR
 DAT MMM YMD
 DATE MMYY YR
 DAY MO YY
 DEATH MON YYDDD
 DECOMMISSION MONTH YYMMDD
 DEMOTION PAROLL

 2966

Annex - B Dates (informative)2967
B.1 Leap years2968
Most tests should be conducted in test environments that include some leap years. The2969
addition of an extra day in the year will affect most date-related calculations if their2970
interval encompasses February 29th. Date to day of week conversions will also be2971
affected for days after Feb 29th.2972

2973
B.2 Flags 01-01-99 - 12-31-002974
All or some of these dates may be used to flag special logic functions. It is impractical to2975
attempt to run a comprehensive set of tests on every day over a two-year period. Test2976
should generally be run on the first and last days of 1999 and 2000 as well as any dates2977
found during the upgrade process.2978

2979

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

104

This problem may occur in data as well. Some professions have used 01-01-00 to2980
indicate a date that is unknown to circumvent electronic forms that have required dates.2981
As systems are upgraded to accept dates after the Year 2000 rollover these entries may2982
take on meanings they were not intended to have.2983

2984
B.3 Year 2000 rollover 12-31-1999 - 01-01-20002985
Many processes compare date-data to system time or to other data. These functions2986
should be tested with combinations of dates that span the Year 2000 rollover. These2987
dates should include test conditions designed to produce errors such as negative time2988
spans. In this way a review of error checking is done as well as a check of normal2989
operation.2990

2991
B.4 Counter rollover2992
System clocks may be based on binary counters that will eventually reach an upper limit2993
related to the number of bits in the counters representation. The date 01-19-2038 -2994
03:14:08 has been identified as a common date for system clocks to rollover. It is based2995
on a 32-bit counter interpreted as a signed integer value representing seconds from the2996
beginning of 1970. Some systems may have different start times, use unsigned values2997
or a different number of bits, that could change the actual rollover date. The above test2998
date is a good place to start but a serious investigation into the operation of a particular2999
system clock is necessary to be sure you have the proper date.3000

3001

Annex - C Example archive documentation (informative)3002
The following items are considered essential to all Test Methodology Reports. The level3003
of detail necessary in each individual area may vary.3004

3005
As in the case of testing procedures themselves, appropriate documentation will vary3006
depending on the organization involved, the level of risk of failure, the level of testing3007
effort, the level of remediation, operational and time constraints, and many other factors.3008
A large organization conducting comprehensive remediation and testing of a global3009
network should keep correspondingly comprehensive documentation. A sole proprietor3010
who determines to replace an aging computer rather than to seek to determine its3011
compliance may need much less documentation. The following areas of documentation3012
should be considered in light of the overall circumstances of an organization’s Year 20003013
effort.3014

3015
Documentation should be maintained to assure that test methodologies and results can3016
be understood when referenced in the future.3017

3018
C.1 Overall organization and responsibilities for Year 2000 compliance3019

3020
Inventory of hardware, firmware, and software3021

3022
• Source, model, version, and other identifying information3023

• Vendors, suppliers, maintenance agreements3024

• Interfaces with other system elements3025

• Compliance, testing, and remediation information from available sources,3026
including published standards and procedures, vendor correspondence,3027
documentation and reports, print and internet materials, notes of verbal3028
communications with vendors, consultants, users3029

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

105

 Risk evaluation3030

• Potential business impact on organization and customers3031

• Potential public impact, harm to persons or property3032

• Triage and alternatives3033

• Testing and remediation capabilities, including time and cost constraints and3034
availability of testing resources and personnel3035

• Conclusions: priorities, overall plan and scheduling for testing3036

 Testing3037

• Specification of system hardware, firmware, software3038

• Test environment: interfaces, drivers, communications3039

• Identify and record any differences between the expected production3040
environment and the test environment.3041

• Assumptions about testing environment, procedures and data3042

• Test procedures selected based on inventory and risk evaluation3043

• Test data used3044

• Report of results, including pass/fail/NA/Not Performed3045

• Identification of errors, exceptions, deviations from expected input or output,3046
performance degradation3047

• Time and resources required for test3048

 Remediation3049

• Corrective action taken and results3050

• Corrective action recommended but not taken3051

• Compatibility issues3052

• Additional testing recommended in light of results3053

• Time and resources required for remediation3054

 Contingency planning3055

• Identification of potential failure contingencies and alternatives in light of3056
status of testing and remediation efforts3057

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

106

• Triage to determine appropriate nature of contingency planning efforts in3058
light of risk evaluation3059

• Plans for responding to failure contingencies3060

 3061
 3062
 C.2 Specification of system under test3063

• A description of the software package under test.3064

• List of all third party component software3065

• Configuration information3066

3067
 C.3 Test environment specification3068
 Include the hardware, types of networks and peripheral devices used.3069
 3070
 C.4 Summary of general test methods and strategies3071
 The use of module as opposed to system testing, environment generators, automated3072
testing or other testing methods should be noted.3073
 3074
 C.5 List of areas tested3075

• Discription of area tested3076

• Clear designation of pass or fail3077

3078
 C.6 List of areas not tested3079
 3080
 C.7 Copy of all list cases executed against individual builds3081
 3082
 C.8 Upper-bound / lower-bound dates3083
 There may be several ranges for different types of data.3084
 3085
 C.9 Exception logic/ error handling3086
 A description of the conditions known to cause exceptions and errors related to date3087
handling along with sequence of events followed when the exception or error occurs.3088
 3089
 C.10 Input/output3090
 Any deviation from accepted standards such as abnormal date formats or the need to3091
pass additional information such as pivot dates should be noted.3092
 3093
 C.11 Remediations3094

• Description of issues found3095

• Type of remediation used3096
 C.12 Compatibility3097

• Products tested as compatible3098

• Known compatibility issues3099
3100
3101

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

107

Annex - D Alternative testing methodology (informative)3102
D.1 Alternatives to comprehensive testing.3103
The following tables describe alternative testing methods pertaining to levels of risk and3104
levels of testing effort.3105

3106
D.1.1 Levels of Risk3107

In order to prioritize a large number of applications, criteria will have to be established to3108
group systems into risk categories. An example of a risk hierarchy is shown below.3109

Table: Levels of Risk3110

Level of Risk Risk Manifestation

Non-Critical No impact
Minor No inconvenience

Some inconvenience
Customers notice problem

Moderate Workarounds exist
Workarounds needed
Customers will be affected

Major Major organizational impact; recovery plans exist
Major organizational impact; no recovery plans exist

3111
D.1.2 Levels of testing effort3112

3113
The greater the number of steps between no testing and comprehensive testing that can3114
be identified, the more flexibility an organization has in meeting its Year 2000 testing3115
challenge with limited resources. These testing steps can be associated with the levels of3116
risk described above.3117

3118
A key issue in determining the levels of testing effort is the degree of system knowledge3119
required to conduct testing. In many cases, detailed system knowledge is not readily3120
available and would require significant work to capture.3121

3122
The following table shows an example of a testing hierarchy that goes from no testing3123
effort to great testing effort.3124

3125
Table: Levels of testing effort3126

Level of test
effort

Knowledge of system
required

Testing technique

1 None No testing required. Wait for possible failure
and react to it when it occurs.

2 None Regression testing. Compile code (if
applicable) after Year 2000 related code
modification.

None Regression testing. Verify that no pre-existing
system functionality was lost after Year 2000
related code modification using production data
and file comparison techniques. (See more
detailed discussion of techniques below.)

None Regression testing. Use existing regression
testing test cases or test beds to verify that no
functionality was lost after code modification.

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

108

3 None Advance data dates. Using production data,
advance input dates to beyond 2000. Inspect
resultant output dates for format and coherency.

4 None Age data 28 Years. For systems using
calendar dates, capture production related data
inputs and outputs. Copy and modify the input
data so that 28 years is added to each date.
Compare the aged output file to the original
output file. The dates should be identical except
for the year. Automated tools can be used for
this purpose.

5 None High risk date Set- No expected results. Add
a series of inputs that include high-risk dates.
Inspect resulting output dates for format and
coherence.

6 None Date simulators. Use a copy of production data
in a computer system in which a date simulator
has been placed. The simulator will return a
value for any date call made by the application
program as a date beyond the Year 2000.

7 Some Key components. In a system composed of
many parts, identify key components such as
conversion routines and test them
comprehensively.

8 None Future environment. If a separate system can
be established in which the system clock has
been advanced to beyond the Year 2000, place
a copy of the application to be tested in the
environment and execute the program. Inspect
the output dates for format and coherence.

None Future environment. Test the application in
the future environment using data aged to
beyond the Year 2000. Inspect the output dates
for format and coherence.

9 Moderate High risk dates - expected results. Prepare a
set of inputs that include high risk dates.
Determine their expected output dates.
Compare actual to expected results.

10 High Comprehensive testing. Implement a
structured testing methodology to ensure that all
aspects of a system's functionality are tested.
Compare actual to expected results.

3127
D.1.2.1 File comparison / file aging techniques3128

3129
A commonly used test technique that avoids the problem of having to understand the3130
internal logic of a system is to compare production output before it is modified to its3131
output after it is modified, when both are aged. For example, consider the following test3132
steps:3133

3134
1. Copy the production input and output of a system at a given time.3135
2. Modify the code of the system for Year 2000 compliance.3136
3. Run the original production input from step 1 through the modified code. The3137

resultant output should be identical to the original output in step 1. This is classic3138
regression testing.3139

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

109

4. Take a copy of the input file in step 1 and age it so the dates are all beyond the Year3140
2000. Run the file through the modified code and capture the aged output.3141

5. Take a copy of the original output file in step one and age the dates in the same way3142
that the input file in step 4 was aged.3143

6. Compare the aged output in step 4 to the aged output in step 5. They should be3144
identical except for the first two digits of the year. (On some file comparison tools3145
these digits can be masked so that the other parts of the dates can be compared3146
automatically.)3147

3148
D1.1.2.2 Shortcomings in the use of production data to test3149

3150
While the use of production data to test in an automated fashion has the appeal of being3151
less difficult to accomplish than more traditional structured testing techniques, there are3152
a number of risks associated with its use. Production data is not likely to contain Year3153
2000 high-risk dates. When production data is aged for testing it will not have dates3154
likely to be acted upon as error codes, leap year dates or other dates at the boundaries3155
of the system's date domain. If only production data is used, the impacts of these other3156
dates will not be tested. There is a corresponding risk that should they be used in the3157
future, the system may fail.3158

3159

Annex - E Coverage overview (informative)3160
A comprehensive description of coverage analysis is beyond the scope of this document.3161
If the Year 2000 testing staff is unfamiliar with these techniques there are many books3162
on general testing procedures containing detailed descriptions of testing procedures. The3163
purpose of this section is to give information about how these procedures can be applied3164
to a Year 2000 project.3165

3166
E.1 Level of testing3167
No reasonable amount of testing can guarantee that a non-trivial program will operate3168
according to its specification. There is a point in every testing process when the cost of3169
finding new errors becomes greater than the expected losses an undiscovered issue3170
might cause. At the onset of the testing process it can be expected large numbers of3171
errors exist, making them relatively easy to find. As testing continues the number of3172
errors will decrease and those errors found are likely to be in more obscure paths. The3173
number of hours required finding each new error should increase in a roughly3174
exponential curve. The cost of continued testing to discover remaining errors eventually3175
becomes greater than the cost of leaving the errors undiscovered.3176

3177
E.2 Coverage analysis3178
A line by line analysis of code can be used to analyze the logical paths, branches,3179
statements or the variable usage in part or all of a system’s code. This analysis can be3180
done by hand or through the use of software tools designed for the purpose. When the3181
analysis is complete the results can be used in the creation of test cases designed to3182
ensure that all areas of the code under test will be exercised.3183

3184
In a Year 2000 project it is often the case that a logical path that addresses special3185
circumstances related to Year 2000 dates, doesn’t exist in the code. This may make it3186
possible to exercise every decision, statement and variable in existing code without3187
revealing that additional code is necessary to process Year 2000 dates.3188

3189
Coverage analysis can be useful in regression testing of remediated systems to3190
encourage an even distribution of testing effort, or it can be used to analyze code3191
changes to promote thorough testing of logical branches added during remediation.3192

3193

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

110

One method of coverage analysis involves tracking definitions, assignments and uses of3194
variables within a piece of code. In this method a relation is formed between points in the3195
code where a variable is defined or assigned a new value and points where the same3196
variable is used as a source value for an operation. Def/Use or DU-pairs are formed3197
when a logical path exists between these points. Test cases are then written that3198
exercise each of the DU-pairs. As with all coverage analysis methods the process can be3199
very time consuming. However in Year 2000 testing program the creation of DU-pairs3200
could be limited to variables used for date processing thus providing a natural means of3201
directing the analysis toward Year 2000 issues. A possible problem with this approach is3202
that some date information may be stored in variables that are not easily recognizable,3203
making it possible they will be left out of the analysis. It is also possible that errors3204
introduced during the remediation process may not be date related, so normal regression3205
testing will also be necessary.3206

3207
E.3 Functional analysis3208
Functional analysis uses the planned functionality of the system as a guide to ensure all3209
functions of the system are tested. The functionality of the system is described in the3210
specification or documentation of the system, allowing test cases to be created without3211
access to the systems code. The process involves breaking down the functions of the3212
program into Equivalence Partitions. An Equivalence Partition tests a single series of3213
operations or procedures, preformed by the system. A single function may perform many3214
procedures depending on its input data.3215

3216
For example consider an inventory system which includes a function to list all packages3217
that have an expiration date prior to the current date. Two classes of test cases for this3218
system element might be created to ensure:3219

3220
• Correct packages are listed when the system date is before Year 2000 rollover.3221
• Correct packages are listed when the system date is after Year 2000 rollover.3222
 3223
 But each class might require several operations be performed depending on the date-3224
data tracked. Each of these broad classes can be split into several smaller classes. The3225
first class might include sub classes:3226
 3227
• Correct packages are listed when the system date is before Year 2000 rollover and3228

some packages expiration dates are before the start of the system valid date3229
interval.3230

 3231
• Correct packages are listed when the system date is before Year 2000 rollover and3232

all packages expiration dates are between the start of the system valid date interval3233
and Year 2000 rollover.3234

 3235
• Correct packages are listed when the system date is before Year 2000 rollover and3236

all packages expiration dates are within the system valid date interval but some are3237
before Year 2000 rollover while others are after.3238

 3239
• Correct packages are listed when the system date is before Year 2000 rollover and3240

all packages expiration dates are between the start of the system valid date interval3241
and Year 2000 rollover.3242

 3243
• Correct packages are listed when the system date is after Year 2000 rollover and3244

some packages expiration dates are after the end of the system valid date interval.3245
3246

Copyright © 1998 IEEE. All rights reserved.
This is an unapproved Recommended Practice Draft, subject to change.

111

The process of breaking down the function into smaller classes should be continued until3247
it can be reasonably expected that any test case written to test the class, tests for the3248
same error. At this point a single test case should be written for each class.3249

3250
Deciding when a class is homogeneous relies on the judgement of the test case author3251
and his or her knowledge of the programming practices that affect how dates may be3252
processed within the system. Most books that describe this technique will provide a list of3253
thing to look for when creating equivalence classes. Boundaries and ranges related to3254
dates are of particular importance in Year 2000 testing. Boundaries may be affected by3255
the valid date intervals for each date format processed, Year 2000 rollover, leap year3256
transitions and other system specific issues. Since the transition to Year 2000 may not3257
have been considered when the system was specified some date ranges may not have3258
been specified. In these cases it may be necessary to select a target valid date range3259
and test functionality over that range.3260

Annex - F Informative references (informative)3261
1003.3 IEEE Standard for Information Technology - Requirements and Guidelines for3262
Test Methods Specifications and Test Method Implementations for Measuring3263
Conformance to POSIX Standards3264

3265
610.12 IEEE Standard glossary of Software Engineering Terminology3266

3267
829-1998 IEEE Standard for Software Test Documentation (reaffirmed 1991)3268

3269
1008-1987 IEEE Standard for Software Unit testing3270

3271
1012-1986 ANSI/IEEE Standard for Software Verification and Validation Plans3272

3273
ANSI X3.30 - Formatting Date Data3274

3275
3276

